
HEWLETT-PACKARD

d (0) NAL OCTOBER 1990

r

HEWLETT-PACKARD

October 1990 Volume 41 0 Number 5

Articles

An Overview of the HP Interactive Visual Interface, by Roger K. Lau and Mark E. 6 Thompson

7 HP IVI Project Management
9 Quality Function Deployment and HP IVI

I^___ _ _ I _ ~ - - - _ I _ - _ _ _ _ - ~ ---- . -~ -

The HP IVI Object-Oriented Toolkit, by Mydung Thi Tran and David G. Wathen

~-~
11
_____-

HP IVI Application Program Interface Design, by Pamela W. Munsch, Warren I. Otsuka, 21 and Gary D. Thomsen

29 Object-Oriented Design in HP IVI

HP IWBuild: Intaactlve User Interface Builder for HP IVI, by Steven P. Witten and 32 Hai-Wen L. Bienz

Creating an Effective User Interface for HP IVIBuild, by Steven R. Anderson and 39 Jennifer Chaffee

26.5-to-75-GHz Preselected Mixers Based on Magnetically Tunable Barium Ferr-lte 49 Filters, by Dean 6. Nicholson, Robert J. Matreci, and Michael J. Levernier

Hexagonal Ferrites for Millimeter-Wave Applications, by Dean B. Nicholson 59
HP DIS: A Development Tool for Factory-Floor Device Interfaces, by Kent L. Garliepp, 62 Irene Skupniewicz, John U. Frolich, and Kathleen A. Fulton

65 Finite State Machine
67 Matching Messages
69 ActionRoutIne8

Editor. Rlchard P Dolan ASsoCiate Editor. Charles L Leath Assistant Editor, Gene M Sadoff 0 Art Director, Photographer, Awld A Danielson
Support Supervisor. Susan E Wright Administratwe Services. Diane W Wocdwofth 0 Typography, Anne S. LoPresti 0 European Production Supervisor, Sone Wirth

2 HEWLElT-PACKARD JOURNAL OCTOBER 1990 0 Hewlett-Packard Com~anv 1990 Printed in U.S.A.

Research Reports

Measurement of R, L, and C Parameters in VLSl Packages, by David W. Quint, Asad 73 Aziz, Ravi Kaw, and Frank J. Perezalonso

Statistical Circuit Simulation of a Wideband Amplifier: A Case Study in Design for 78 Manufacturabiiity, by Chee K. Chow

System Level Air Flow Analysis for a Computer System Processing Unit, by Vivek 82 Mansingh and Kent P. Misegades

Departments

4 In this Issue
5 What's Ahead
45 Authors

The HmklWackard Jounul is published bimonthly by the Hewla-Packard Company to recognize technical wntribubions made by Hew&-Packard (HP) personnel. While
the information found in this publicatiMl is believed to be accurate, the Hewlett-Padcard Company makes no warranties, express or implied, as to the aaxrraCy or reliability of
such information. The Hewlett-Packard ComPMy disclaims all wanties of merchentabilii and fitness for a WtiaIlar purpose and all obligations and liabildies for damages,
including but not llmW to indirect, special, or amequwW damages, attorney's and expert's fees, and court ccsts, arising out of or in wnnectlon with this publication.

Sub.crlptim: The Hew&-Packard Journal is disWbuted free of charge to HP research, design, and manufaduring engineering personnel, as well as to qualified non-HP
indlviduals. likarleg, and educatknal instihltions. please address subscription or chacge of eddress requests on printed lettemesd (or include a business card) to the HP address
on the back cover that is classat to you. When submitting a change of address, please include your zip or postal d e and a copy of your old lebel.

Submbalonr: Although aMcles in the Hewlett-Packard Journal are primarily authored by HP employeeg. articles from non-HP authors dealing with HP-related research or
solutions to technical problems made podbk, by using HP equipment are also considered for publication. Please contacl the Edtw betore submitting such articles. Also, the
Hewlelt-Packard Journal encourages technical discussions of the topics presented in recent rutides and may publish letters sxpectsd to be of interest lo readers. Letters should
be brief, and are sut+ectto editing by HP.

copyright Q 1980 Hevlett-Packard Company. All rights reserved. Permission to copy without fee all or part of thii publication is hereby granted provided that 1) the copies
are not made, used, displayed, or distributed for commercial advantage; 2) the Hewlett-Pedcard Company Wright mtke and the Me of the publication and date appear on
the copies; and 3) a notice stating that the W i n g is by permission of the Hewlett-Packard Company appears on the copies. othamise, no portion of this publication may be
produced or transmitted in any form or by any means. eleamnk or mechanical. including photocopying, recording. or by any information ator- retrieval system wimout written
pertnl~~ion ot the HewM-Padcard Company.

Please address inquiries, submissions, and requests to: Edtw. Hewlett-Packard Journal, 3200 Hillview Avenue, Pal0 Alto, CA 94304, U S A .

i - .
OCTOBER 1990 HEWLET-PACKARD JOURNAL 3

WVWV.HPARCHIVE.COM

In this Issue
E3%%% Our cover subjects this month can barely be seen in the cover photograph.

They’re the two tiny specks in the middle of the flat plate in the foreground.
They are spheres of barium ferrite that serve as the frequency-sensitive
elements of magnetically tunable bandpass filters for the millimeter-wave
frequency range. (The millimeter-wave range is the region of the elec-
tromagnetic spectrum from about 30 to about 300 gigahertz. It’s becoming
more important as radar, communications, and other systems move to higher

I frequencies seeking higher performance or less crowding.) These filters are
used as preselection filters in the HP 11 974 Series preselected mixers, a

family ot tour mixers designed for down-converting millimeter-wave signals from the 26.5-to-75-
GHz range into the frequency range of compatible HP spectrum analyzers. The preselection filter
removes unwanted image and multiple responses, natural consequences of the mixing process,
that clutter the spectrum analyzer display and obscure the desired response. In the microwave
frequency range, below 30 GHz, yttrium iron garnet (YIG) spheres have been used as resonators
in such filters, but at higher frequencies, tuning magnets for YIG spheres begin to pose design
problems, so a new material was needed. A new four-sphere filter design was also found necessary
to achieve the required performance. The design and performance of the HP 11974 Series
preselected mixers are described in the article on page 49. The article on page 59 gives the
reasons for the choice of scandium-doped, M-phase barium ferrite for this application and tells
how the spheres are made.

Software for computer integrated manufacturihg (CIM) is in great demand, and HP development
laboratories are responding with a steady stream of new products. Two are featured in this issue.
The first, HP Interactive Visual Interface, or HP IVI, uses object-oriented design, the industry-stan-
dard X Window System, and widget technology to help application software developers provide
graphical user interfaces for industrial applications. (Widgets are standard pieces of software that
produce pushbuttons, scrollbars, and the like on computer screens.) HP IVI improves its users’
productivity in designing user interfaces because it is interactive, facilitates saving and reusing
interfaces, and doesn’t demand that users know the details of the X Window System or widgets.
The article on page 6 gives an overview of HP IVI, which consists of two main parts. Users
construct their interfaces using HP IVl’s interactive editor, described on page 32, and then activate
the objects created with the editor by writing C-language programs using a toolkit of functions
provided by HP IVl’s application program interface. Details of the application program interface’s
object-oriented toolkit are in the article on page 11, and the design of the application program
interface is the subject of the article on page 21. In the article on page 39, we’re told how the
HP IVI editor’s own user interface was refined and given a 3D appearance with the help of a
team of industrial designers.

The other CIM software product in this issue is HP Device Interface System, or HP DIS. It
addresses the problem of efficiently developing interfaces between computers and factory-floor
devices like robots, programmable controllers, and machine tools. This is a problem because
these devices typically come from many manufacturers and have different, proprietary interfaces.
HP DIS is a toolkit that helps application software developers create and test interfaces between
HP 9000 computers and factory-floor devices. Its development facility provides a high-level lan-
guage for specifying communications protocols. Its testing facility provides a test generator, a
test exerciser, and a device simulator that makes it unnecessary to have actual devices to test
interfaces. The HP DIS run-time facility executes protocols in real time. The design and perfor-
mance of HP DIS are described in the article on page 62.

m

Simulation is an important part of many design processes because it makes it possible to refine
a design without actually building anything, provided that the computer d e l used for simulation
accurately reflects the behavior of the device or system being designed. Engineers at HPs
Colorado Integrated Circuits Division wanted to verify the accuracy of the electrical models of a
408-lead multilayer ceramic package for a large integrated circuit chip. The models were made
up of discrete inductances, capacitances, and resistances. To verify the models, these parameters
had to be measured on a real package. When traditional high-frequency measurement methods
proved inadequate, new methods were developed. These methods are the subject of the paper
on page 73.

In integrated circuit design, the objective of simulation is sometimes to predict, in the design
phase, the statistical distributions of a circuit’s performance parameters in production. A problem
is that IC parameter variations aren’t all completely random, as they are assumed to be by
commercially available circuit simulators. Those within a chip, such as side-by-side resistor values,
are highly correlated, and failure to take this into account leads to inaccurate? simulations. In the
study reported in the paper on page 78, this problem was solved by applying principal component
analysis, a branch of multivariate statistics. Each circuit parameter was expressed in terms of a
set of independent random variables. The independent variables were then used as the inputs
to the circuit simulator program, and the results were later converted to circuit parameter data.

Another application of simulation, this time to predict the pressure drop and air flow characteristics
in a computer system processing unit, is described in the paper on page 82. In the past, these
quantities have been determined from measurements on prototype machines, which are available
only after most of the design has been done. If the measured results are unacceptable, major
design changes may be required. The study showed that, using supercomputers and finite element
modeling, it is possible to simulate the air flow accurately enough to allow meaningful decisions
early in the design phase.

R.P. Dolan
Editor

Cover
The flat plate in the foreground is the iris plate from a magnetically tuned preselection filter

used in the HP 11 974 Series preselected mixers. In the middle of the plate are two tiny barium
ferrite resonator spheres. Also shown are the top and bottom halves of the tuning magnet, the
magnet body, and the two parts of the waveguide assembly.

What’s Ahead
In the December issue, we’ll have articles on the autochanger and servo design and system

integration of HP’s 20-Gbyte rewritable optical disk library system, designed for direct access
secondary storage. Error correction, software protection, and system integration of HP’s CD-ROM
drive will also be featured. The data communications and terminal controller for HP 3000 computers
running the MPE XL operating system now supports X.25 network packet assembler/dis-
assemblers; two articles will deal with this capability. We’ll also have a research report on aniso-
tropic dimensional changes in cold-drawn copper beryllium alloy as a result of aging.

OCTOBER 1990 HMyLEIT-pAcI(ARD JOURNAL 5

c WWW. H PARCHIVE.COM

An Overview of the HP Interactive Visual
Interface
The HP Interactive Visual Interface (HP /VI) product uses
object-oriented and window technologies to provide
interactive and programmatic tools for building graphical
user interfaces.

by Roger K. Lau and Mark E. Thompson

1 N THIS AGE OF INFORMATION, creating effective user
nterfaces for industrial automation applications is a

- &eater challenge than it has ever been. The right details
from a vast array of information must be shown in the
appropriate form to the intended group of viewers. In ad-
dition, the information that is communicated must be con-
veyed in such a manner as to enhance the decision making
process. It often takes more time to develop the interface
than it takes to develop any other part of an application.
HP Interactive Visual Interface (HP M) is designed to help
developers provide the type of user interface needed for
industrial applications.

HP M is a user-interface development tool built on the
X Window System Version 11 and runs in the HP-UX
operating system environment. It consists of two main
parts: an interactive editor (HP MBuild) and an application
program interface (API). Users construct their symbols and
displays with HP IVIBuild [the builder) and write a C pro-
gram using the M I calls to call up and activate the windows
and other objects created with the builder. An application's
user interface can be constructed without the assistance of
HP IVIBuild, but with it productivity is greatly increased
by the ability to create the interface interactively. HP IVI
is also one of the few products to combine at the builder
level the power of a graphical presentation with the flexi-
bility and interactivity of widgets [e.g., pushbuttons,
scrollbars, and toggle buttons).'

This article describes some of the market research and
the target customers for HP M , and provides an overview
of the two main components of HP M , HF' IVIBuild and
the application program interface.

Market Research
The main customers of HP IVI are software engineers

who build industrial applications. This includes system
integrators, independent software suppliers, and end users
with internal software engineering groups. These users
benefit by being able to customize screens to their custom-
ers' applications and by being able to reuse the symbols
they created and saved in previous applications. HP IVI
also buffers its users from having to know the details of
the intrinsics of both the X Window System and widgets.
This is considered to be a benefit and a boost to productiv-
ity.

Market research indicates that manufacturing applica-

tions require graphical user interfaces, and the use of
graphics on the factory floor is growing and being applied
to monitoring production processes and data gathering.
The requirements are performance, reliability, and the in-
tegrity of data from a workcell. To satisfy these demands,
the HP IVI product:

Minimizes the user's expense for the development of
user interfaces
Provides a distributable user interface for improved cost,
performance, and flexibility
Offers windowing functions and dynamic data config-
uration
Integrates graphics and widgets intelligently
Gives software engineers the productivity boost needed
for them to remain competitive
Ensures top performance and reliability
Gives the user full control over data from the factory floor
Builds on standards.
Earlv in the project, the HP IVI project team used a

techn;que called quality function deployment (QFD) to
help analyze customer needs in the industrial automation
area. This research helped to define the features for HP
M. The box on page 9 provides more information about
QFD and its use by the HP IVI team.

HP IVlBuild
HP IVIBuild is the interactive window and symbol build-

(continued on page 8)

HP IVI Build

Objects Created
by HP IVI

4 ADDliMtlon

API = Application Program lnterfaoe

Flg. 1. HP IVlBuild is used to create user interface objects
that are saved in a file, and a user application uses the API
functions to retrieve and manipulate the objects.

6 HEWLETFPACKARD JOURNAL OCTOBER 1990

HP IVI Project Management

The HP Interactive Visual Interface project was a relatively
large software project (100 KNCSS) and as such it was faced
with some interesting challenges during product development,
Besides the normal challenges associated with software project
management (e.g., version control, code inspections, project
standards, and schedule deadlines), HP IVI was faced with three
main challenges: determining the exact customer needs before
design and implementation, using existing software, and using
new software development technologies. For determining cus-
tomer needs, a process called quality function deployment (QFD)
was used. This process helped us to determine the feature set
for HP IVI (see box on page 9). The existing software was a
combination of software from other HP entities and from outside
vendors. Finally, the new technologies included the use of objects
and windows for design and implementation.

Exkting S o m m
One of the primary goals of HP IVI was to leverage the work

of others. The decision to use existing software resulted from the
desire to decrease the time to market for the product by reducing
the engineering time and effort involved in design, implementa-
tion, and support. There was also a need to base HP IVI on
components that conform to standards (explicit or de facto). To
these ends, the basic framework of HP IVI is based on software
that was purchased as well as software that was produced by
other entities in Hewlett-Packard.

The HP IVI project team realized the benefits that could be
obtained by leverage early on. The basic object-oriented
framework, the error handling routines, the X11 client library and
server, the X toolkit, and the HP X widget set were all the work
of others. While we certainly achieved our goals of reducing
design, implementation, and support costs, we missed our orig-
inal time-to-market goals.

Following are some of the lessons we learned about leveraging
existing software. . The quality and stability of existing code is a critical factor. If

there are many defects in this code, much time will be spent
isolating the problem and negotiating with the software
supplier to have it repaired. This can wreak h a m with a project
schedule. One way around this is to obtain the source code
for the underlying software and make the repairs locally. This
may provide the most timely solution, but also raises many
supportability questions.
Negotiating enhancements to the existing software may be
difficult. Priority lists may not mesh well between vendor and
receiver. Important enhancements in the underlying software
may be delayed because of this. . Performance of a product may be adversely impacted by exist-
ing software. If this is the case, lobbying for improvements
may be time-consuming and marginally successful. . Good documentation of existing software is essential for a
product to be successful. Inadequate or inaccurate documen-
tation can also impact schedules.

1 It is very important to establish a good line of communication
and a strong working relationship with the existing software
supplier. Changes made to their product may have drastic
effects on the local product. It is important to learn about
changes as early as possible (Le., at the investigation phase
rather than at the release phase).
Project teams that leverage a large amount of software from

other sources should be very careful not to assume that leverag-

ing means that less attenti i can be paid to producing a very
detailed design. Leveraging software does not mean there is no
cost associated with it. Engineers have to learn and understand
the code, design impacts must be assessed, and the leveraged
code must be supported over the life of the product. Also,
leveraging product components does not automatically ensure
a faster time to market.

N.w Technologier
HP IVI is an object-oriented system that is based on the widget

technologies and the X Window System. Through the QFD pro-
cess we found that building on a standard software platform is
viewed as an important requirement by our target market.

At the start of the HP IVI project no one on the team had any
experience with object-oriented programming and design and
only one person was familiar with window systems. Therefore,
we had to develop a process to disseminate technical information
and promote technical expertise among the project team very
quickly. This was aGcom hed thfough training, the exchange
of informatbn during design and code reviews, and the simple
sharing of expertise among the project team.

The following observations come from our experience with
object-oriented programming and design: . Careful consideration should be given to mapping object

classes to source code files. The consequences can be fre-
quent file access conflicts when changes are made to a file. . The temptation to redo class hierarchies should be controlled.
Developers must be careful to make practical choices on when
the class hierarchies are sufficient. . First-time users should not expect magic. We believe that there
was a significant learning curve involved in our decision to
use object-oriented programming and design. . Once the learning curve is overcome, the object paradigm is
a natural and produotive one to use for developing software
products.
Object-oriented programming and design have a technical
jargon that might mystify develop and their managers at
first. Therefore, familiarity with and nsistent use of terminol-
ogy must be established at the start of the project.
The object paradigm is not applicable to all software engineer-
ing projects. Knowing when to reject this technology in favor
of a procedure-based design is important.
The use of multiple new technologies in a project with few

team members having experience in any of these technologies
does have its problems and can be a significant factor on the
schedule because it is difficult to anticipate problems and avoid
pitfalls. However, using new technologies on a project can be a
significant motivator to the engineering staff. Benefits and risks
of the inclusion of new technology in any product development
effort must be weighed carefully.

Chuck Robinson
Section Manager

Industrial Applications Center

Robin Ching
Project Manager

Industrial Applications Center

OCTOBER 1990 HEWLEll-F'ACKARD JOURNAL 7

er of HP IVI. It is an API application because it uses the
HP IVI API library of C functions to handle both the visual
and the nonvisual aspects of creating objects such as man-
aging object data structures and performing operations re-
quired to manipulate objects. Consequently, the windows
and models created and saved by the builder can be restored
by an API program and vice versa (see Fig. 1). For the most
productive use of HP M, the user first creates the windows
needed by an application using HP IVIBuild and then
mobilizes the created windows using a C program contain-
ing API functions. Fig. 2 shows an application user inter-
face being created with HP IVIBuild. Although an entire
HP M application could be written using just the API C
functions, HP IVIBuild provides the following advantages
over this method: . No initial programming is required.

The user can look at the user interface and manipulate
it while creating it. . The interface can be altered very quickly. . Several graphical conveniences are available such as
snapping to a grid and a simple method of creating ellipses.
An API program that uses HP MBuild-created objects
is much simpler than one that creates the same objects
from scratch.
Symbols created in an HP IVIBuild session can be saved
and reused.
The articles on pages 32 and 39 provide more information

about HP MBuild.

Objects and API
Since HP IVI is an object-oriented system, all operations

are done with objects, resulting in a system that is a hierar-
chy of objects. Building this hierarchy starts with creating

window objects (windows on the display) and then placing
graphics and widget objects into the windows. To activate
the objects in the window (Le., give them dynamic proper-
ties) some of the attributes of the objects can be changed
(e.g., foreground or background color, visibility, or fill per-
centage for a rectangle). When an application uses objects
to display data values, it can make calls to the API functions
to update the data values in the objects displayed in the
windows.

The objects used in HP IVI are categorized into four
hierarchical layers:

High-Level Objects. These objects specify global attri-
butes for the other levels of objects. This level includes
the window and model objects mentioned earlier. . Composite Objects. These are organizational groupings
of primitive objects. This includes menus and their com-
ponent menu panes, row-columns, and scroll lists. . Primitive Objects. These are basic widgets and graphics
objects-the basic visual pieces that make up the display.
Graphics primitives include items such as polylines,
splines, arcs, rectangles, and circles. Widget primitives
include pushbuttons, toggle buttons, text widgets, text-
edit widgets, menu buttons, and scrollbars. Both types
of primitive objects can receive input from the user.
Low-Level Objects. These are mostly nonvisual objects
that are used to specify certain object attributes. Objects
that handle object data structures and objects that handle
events are examples of low-level objects.
Because an object hierarchy is used, displays can be

created from the top down (parent to child) or the bottom
up (child to parent), giving the designer a lot of flexibility
in implementation. Certain objects can be gathered and
arranged by making them into children of composite ob-

(continued on page 10)

Fig. 2. An application user inter-
face being created using the in-
teractive tools provided by HP
IVIBuild. The tool box, utility box,
and line width panels are HP
IVlBuild components.

8 HEWLETr-PACKARD JOURNAL OCTOBER 1990

1 ,
% -

I

Quality Function Deployment and HP fVI

Quality function deployment (QFD) is an analytical method of
collecting and analyzing subjective and objective
customer needs and wants. It is one of the methods the HP IVI
project team used to determine the minimum feature set required
by our target customers. QFD was chosen because it fac
not only the translation of customer wants and needs into p
features, but it also enforces consideration of methods to
ment the features. When the features are known, the project

hedule and required resources can be properly planned. Since
r organization (HP's Industrial Application Center (IAC)) was

new, it was easy to promote QFD as a viable technique because
there were no traditions ingrained in the organization.

The QFD process is shown in Fig. 1. The first step is to collect
the customer needs data. To get this information we visited many
of the customers who represent our target market. This took
place over a period of about two months. IAC teams of two or
three members went out to each customer site. Team personnel
came from marketing, R&D, and management. These teams pre-

a broadly defined, theoretical product to each customer,
g on how the product could make them more successful.

To get the spoken and latent needs out, a looseky structured,
open-ended questionnaire was presented as an aid for generat-
ing discussion. Notes were taken to record as much data as
possible. The idea behind this technique was that some people
don't state their feelings directly. They might say, "Forms based
applications are good ... if you have to use a terminal." But, what
they really mean is, if given a choice, they wouldn't use a terminal
at all for that application.

Once the data was collected it was time for analyzing. We
formed teams with people from the HP IVI project, marketing,
and several people from outside IAC. Some of these people
included learning and human factors specialists and a user inter-
face developer from another division. One other person was our
QFD consultant.

-WII..IIlw .I.W ""W..l... V. h..".. ". 'p..i....P..-.."..

Method in Satisfying Customer Needs and Wants 1 I
Fig. 1. The QFD process.

Customer needs, which we called murmurs, were categorized
into groups based on some desired customer feature related to
issues such as ergonomics or performance. When we finished
categorizing the murmurs, each murmur was ranked into primary,
secondary, and tertiary needs. Each of these rankings rep-
resented a translation of customer needs into quantifiable tech-
nical terms. An example of customer murmurs and the rankings
is shown in Fig. 2. In most cases we had to derive the secondary
or tertiary need. From here the features were placed on a tree
diagram to ensure that there were no gaps, and to guarantee
that we had met all of our customer needs.

During data collection, each of the customer needs should be
given an importance rating. However, our collectors had not
been trained before going to the customers and so they did not
collect the importance rating with the murmurs. The team as-
signed the ratings during analysis.

The next step was to develop methods for delivering customer
needs. This was done with knowledge of what could be done

into choosing a system that could

dow System.
Each implementation method was analyzed to determine if it

had a strong, medium, or weak relationship tosatisfying customer
needs. This formed the relationship matrix (see Fig. 3). Symbols
are used in the matrix to indicate the relationship between cus-
tomer needs and implementation methods. If no symbol is placed
on the matrix then the implementation has no relationship to
satisfying customer needs. This graphic representation is very
useful. One can look at the matrix and see the areas that cover
the customer needs and the areas that require more attention
because they have little or no coverage. This task is the most
labor intensive portion of the QFD process.

first and second release of HP IVI
from the matrix, we d a number to each cell. For each
feature we summed Is to get an idea of how effective the
feature w l d be at the customer needs. We selected
a cutoff value to determine the set of features that would bring
us the most return for our investment in engineering time and
effort.

QFD proved to be an excellent tool for product definition. The
feature set that was established for HP IVI has generated much
customer interest. One of the most significant benefits from this

Tertiary Primary Secondary

Screens Come up

Many Symbols 10 to 20
on Screen Seconds

Must h v e Good
Performance

Pictures not Text Icons Must Have Good
Ergopomics

Must Have Range
Forms Entry Checking for

Needed Data Entry

Fig. 2. A sample of customer needs and wants (murmurs)
ranked in primary, secondary, and tertiary order.

OCTOBER 1990 HEWLETT-PACKARD JOURNAL 9

Primary

Implementation

Display
C E 8 8

Screens to
Must Have c o ~ s ~ p Seconds 0 0

0 0

Good
Performance Many ,o to 2o

Symbols Seconds on Screen

Must Have
Range

0

0

0

I a r d w a re ji
f

P x

A A

0 0 0

0 0 0

Software 1 Forms I

0

0 0

0 0 A

0 0 0 0

0 Strong Relationship
0 Medium Relationship
A Small Relationship matrix,

Fig. 3. Portion of a relationship

process was that because the engineering team was involved
in this process, they emerged with a much better understanding
of what the users really wanted.

Knowing when to stop the QFD analysis is important Unless
specific goals and targets are set, overanalyzing can waste valu-
able project time. Establishing a set of musts and wants to be
accomplished with QFD, and drawing clear boundary lines early
in the investigation phase, helps keep the analysis from bogging
down in too much detail. Also needed are tools to support the
technique. The HP IVI team did most of the data analysis manually

and as a consequence the data has not been updated as often
as might have been done if the data could be manipulated elec-
tronically

Mark Thompson
Kent Chao

Software Development Engineers
Industrial Application Center

jects. Composite objects can be used to organize and add
extra control over their descendant objects. For example,
a row-column object can be used to organize different
widget primitives into rows and columns.

All objects in the hierarchy have attributes (e.g., color,
size, shading, etc.). It is through the control of these attri-
butes that the displays created with HP M get their
dynamic quality. One can easily manipulate several attri-
butes on an object with a single API function call, changing
location, color, visibility, or some other attribute. Other
API function calls enable the developer to:
H Create and free objects
I Manipulate object attributes

Save and restore objects
H Locate objects

Obtain user input from primitive objects
Perform visual updates of the display
Manipulate lists of objects.
As an example, callback objects can be attached to any

visual object and cause a callback function to be called
whenever a predefined event (such as clicking on the
mouse button or depressing a key on the keyboard) occurs.
The callback function can be used to obtain and manipulate
data from the shop floor and modify attributes of objects

on the display (e.g., changing an object’s color from green
to red or changing the textual information displayed in an
object). The API functions and the internal design of these
functions are described in the articles on pages 11 and 21.

Conclusion
HP IVI facilitates the design and implementation of one

of the most important parts of any manufacturing applica-
tion-its interface to the user. The benefits of the window-
ing technology of X I 1 are just beginning to be realized on
the manufacturing floor. HP IVI is one of the first integrated
applications to bring the X Windows technology to the
factory floor. The combination of widgets and graphics
gives the application designer more freedom to present the
needed information in the fashion best suited for its in-
tended viewers. This design freedom promotes the kind of
informed decision making needed in today’s fast-paced
and highly competitive industrial marketplace.

References
1. D.L. McMinds and B.J. Ellsworth, “Programming with OSFI
Motif Widgets,”Hewlett-PackardJournal, Vol. 41, no. 3, June 1990,
pp. 26-35.

I O HEWLETT-PACKARD X)URNAL OCTOBER 1990

The HP IVI Object-Oriented Toolkit
Using object-oriented design techniques, a minimum set
of functions is provided with the HP /VI product for
manipulating widgets and graphic objects to create a
graphical user interface.

by Mydung Thi Tran and David G. Wathen

HE HP IVI APPLICATION PROGRAM INTERFACE
(API) is an object-oriented toolkit of C functions that T enable a software developer to create an interactive

and informative graphical user interface programmatically.
The API functions can be used for any application in which
a highly interactive graphical user interface is required.
The collection of API functions provides the ability to build
different models of user interfaces that can be saved and
used again in other user interfaces. High-level objects pro-
vide the control and organization necessary to support
lower-level composite and primitive objects. All objects
have configurable attributes or characteristics that make it
possible to customize the look and feel of a particular ob-
ject. Color, size, and font are a few examples of these attri-
butes. The API functions allow a programmer to do things
like create and free objects, query attributes, save and re-
store objects, get input, and find objects by location.

This article describes the the API functions and the arti-
cle on page 21 describes the internal design supporting
these functions.

the display. There can only be one system object per appli-
cation. All other objects (except low-level objects) are de-
scendants of the system object. The direct descendant of a
system object must be a server object.

A server object is the interface to the display system.
Information regarding the display and its physical charac-
teristics is stored inthis object. The server object establishes
the link between the display device (an XI1 server) and
the user application (the client). Just like the system object,
there can only be one server object per application. Win-
dows are the only children of the server object.

Window objects represent the drawable region of the
display. A window is an area on a display that connects
the world coordinate system (e.g., inches, mm, etc.) defined
for a window to the device coordinates (i.e., pixels) of the
display system. The window can be seen as a viewport
into the world coordinate system. An application can have
any number of windows. They can overlap one another
and they can be manipulated using a window manager or

The API Object Hierarchy
All the components of an API application are separate

objects that are combined together in a hierarchical arrange-
ment to form a working user interface. An example of this
hierarchical relationship is shown in Fig. 1. This relation-
ship is described in terms of ancestry. For instance, Model
12 in Fig. 1 is the parent of three children: Model 21, a rect-
angle, and a row-column object. Another way of saying
this is that Model 12 is the ancestor of three descendants:
Model 21, a rectangle, and a row-column object.

Every API object belongs to one of four groups: high-level
objects, composite objects, primitive objects, or low-level
objects. Fig 2 lists the different API object groups.
High-Level Objects. These objects control and organize
groups of objects and hold global resources that help define
other objects in the hierarchy. The high-level objects must
be created in a specific order: system object, server object,
window objects, and model objects. Before anything can
be displayed, at least one of each of these objects must be
available. Since these objects are required for every appli-
cation, the API will create default high-level objects if they
are not explicitly created.

The system object is the highest object in the API object
hierarchy. This object stores global attributes that affect
the input loop, the update pass, and global resources. The
input loop is composed of the code that handles user input
and an update pass is the process of flushing changes to

Fig. 1. The API object hierarchy of a simple application.

OCTOBER lSS0 H E W i - € l l - P ~ D J O I J W 'lf

WWW. H PARCHIVE.COM -

the API functions. The last high-level object, the model
object, is the only valid child of a window object.

The model object allows an application to put composite,
primitive, or other model objects into a single group or
collection. When these objects are grouped together, func-
tions can be performed on them as if they were a single
object. At the same time, each part will retain its individu-
ality. Models can represent a symbol or template that can
be saved and restored as many times as desired. Models
can have other models, composites, or primitive objects as
children.
Primitive Objects. These are basic visual objects that are
part of one of two categories: graphic primitives or widget
primitives. The graphic primitives are visual objects (e.g.,
circles, rectangles, and arcs) that can receive mouse input.
An application can use these objects for graphically repre-
senting user-oriented objects that display crucial informa-
tion such as liquid levels and temperature. The widget
primitives (e.g., pushbuttons, scrollbars, and text edits) are
also visual objects. However, unlike the graphics primi-
tives, widget primitives can receive keyboard input as well
as mouse input. The widget primitives are used for display,
text editing and input, and selection capabilities. Primitive
objects have no children.
Composite Objects. These objects provide the means to
organize and manage other objects. Specifically, composite
objects make it possible to group primitive widget objects
and other composite objects so that they can be manipu-
lated as a single object. A function or attribute specified
for a composite object affects its children without actually
changing them. For example, erasing or redrawing a row-
column object will cause all its children to be qrased or
redrawn automatically.
Low-Level Objects. These are objects that are not directly
visible like primitive or composite objects. They are stand-
alone objects that are used to specify attribute values for
primitive, composite, or high-level objects. Low-level ob-
jects are used to set attributes for the other three object
groups, apply API functions to a list of objects, or deal with
user input from the activated objects.

High-Level
Objects

System
Server
Window
Model

Composite
Objects

Menu
Uenu Pane
?ow-Column
%roll List

Primitive
Objects

Wldgets:
Image
Menu Button
Pushbutton
Scrollbar
Text
Text Edit
Toggle Button

Graphics:
Polyline
Line
Rectangle
Square
Circle
Ellipse
Arc
Spline
Text Label

Flg. 2. API object groups.

Low-Level
Objects

~

Callback
Color
Font
Raster
Input Data
List
Point
Transform

Polymorphism and API
One of the key features of object-based systems is the

concept of polymorphism. Polymorphism allows different
objects to share a common operational interface (operations
with the same name). When an operation is invoked, the
function dynamically determines the object type and exe-
cutes the appropriate code. Object-oriented programs are
polymorphic because they can operate on many different
object types with the same functional interface. This com-
mon interface provides a great deal of flexibility and ease
of use to the API programmer. Common access reduces the
number of functions and increases the power provided by
the basic set of functions.

The API functions provide the functionality of
polymorphism through an identifier called Ztld. When an
object is created via the ztcreate function, a Ztld is returned
from the call for use in further operations. The Ztld is a
pointer to the object that was just created. This handle
allows the programmer to reference the object when addi-
tional modifications are necessary. The API functions use
this identifier to determine the type of object being manipu-
lated.

Attributes and Arglists
Associated with API objects are attributes that describe

properties of these objects. Examples of object attributes
include properties that define appearance characteristics
such as colors and fill patterns for graphic objects, and
font, highlight area, and 3D shadowing for widget objects.
There are also coordinate system attributes that control the
position and sizing of objects, including their point, height,
width, scale, rotation, and translation. Table I lists the
categories of API attributes.

There is a specific list of attributes assigned to each API
object type. Users can set these attributes to desired values
or can query the values contained in them through a data
structure called an Arglist. An Arglist is a variable-length array
of attribute-value pairs. The following is the C structure
declaration for an attribute-value pair.

struct ZtArgListStruct

ZtAttributeType ZtAttribute;
ZtValueType ZtValue;

typedef s t ~ c t ZtArgListStruct ZtAgListltem;

/'where:

1 ;

+ . . . 1 I */

/* ZtValueType is defined as a pointer to a ' I
I" variable containing theattribute value */

- I I. . .-a- * - I

I" ZtAttribute is the def inedettribute *I

Arglists are used to define attributes of objects or functions.
Some of the advantages of using Arglists include:
w Arglists free users from fixed parameters in a function call.

The number of attributes that the user can pass as param-
eters can vary.
The number of function calls can be minimized by in-
cluding multiple attributes in the Arglist as opposed to
having to use one function call per attribute change.
Attributes can be initialized in the Arglist either staticallv
or dynamically (at run time).

1~HEWL!3l-PACWIRD JOURWU. OCTOBER lSs0

WWW. H PARCHIVE.COM

Parenting Attributes that affect or define

1.

i Coordinate System

i

I Trickle-Down

4
Color, Font, Raster

Pattern and Line

n
1

Widget Appearance

Callback

Description
Attributes that are common to most
objects. For example, the object
name (ZtNAME), an object’s visibility
status (ZtVISIBLE), and user data
(ZtUSERDATA).

These are attributes that define:
Size and position such as
an object’s height and width
(ZtHEIGHT and ZtWIDTH)
Transformation, such as
an object’s rotation, scaling, and
translation characteristics
(ZtROTATE, ZtSCALE, ZtTRANSLATE)
Normalized device coor-
dinates for placing windows
(ZtXMIN, ZtXMAX, ZtYMIN, ZtYMAX)
Aspect ratio of window
device coordinates (ZtADJUST,
ZtXADJUST, ZtYADJUST)
Aspect ratios of server objects
(ZtXPIXELS, ZtYPIXELS).

Attributes that affect the
descendants of objects
(ZtVISIBLE, ZtSENSITTWE).

Attributes that specify the
object’s color, font, or raster.

Raster lists (ZtRASTERLIST)
An object’s color (e.&, ZtBACK-

GROW-COLOR, etc.)
An object’s font (ZtFONT)
An object’s raster (e&, ZtFlLL
RASTER, ZtlCON-RASTER).

GROUND-COLOR, ZtFORE-

Attributes that control the
appearance of borders, lines, and
fills (e&, ZtFILLTILE, ZtBACK-
GROUND-TILE, ZtLINLWIDTH).

Attributes that define a widget’s
appearance (e.g., ZtSHADOW,
ZtBOTTOMSH ADOW-COLOR,
ZtTOP-SHADOW- COLOR).

Attributes used to attachuser-
defined functions to an object.
These functions are used to
respond to user input. For
example, ZtREASON specifies
when a callback function should
be called, and ZCALLBACKFUNC-
TlON specifies a function for
processing user input.

the current API object hierarchy
(e.g., ZCHILLLIST, ZtCURRENT-
MODEL).

Keyboard Traversal Attributes that assign the input
focus to an object (e.g., ZtTRA-
VERSAL, ZtNEXT-TOP-WINDOW).

Function Attributes that affect the capa-
bilities of functions (e.g., ZtRE-
CURSIVE, ZtMERGE).

API Functions

Because of polymorphism a minimum number of API
functions are required for manipulating API objects.
Polymorphism allows the same API function to be used to
handle more than one object. Table I1 shows the API func-
tions available for manipulating the object groups shown
in Fig. 2.

Table II
Categories of API Functions

Function Use

Create and Free Objects

Manipulate Attributes

Save and Restore Objects

Locate Objects

Receive Input

Perform Visual Updates

Function Names

ZtClone, ZtCreate, ZtCreateList,
ZtFree

ZtChange, ZtQuety

ZtSave, ZtRestore

ZtFindByAttribute, ZtFindByLocation

ZtDo(. . ,ZtlN PUT,. .)

ZtDo(..,ZtDRAW,..)
ZtDo(..,ZtERASE,..)
ZtDo(. . ,ZtFLASH,. .)
ZtDo(..,ZtLOWER,..)
ZtDo(..,ZtRAISE,..)
ZtDo(..,ZtREDRAW,..)
ZtDo(..,ZtUPDATE,..)

Manipulate Lists

Manipulate Arglists

ZtCheckListObject, ZtCountList,
ZtGetListlndex, ZtGetListObject,
ZtGetListTail, ZtlnsertListlndex,
ZtlnsertListObject, ZtlnsertListTail,
ZtMergeListlndex, ZtMergeListTail,
ZtMergeListObject, ZtRemoveListlndex,
ZtRemoveListObject, ZtRemoveListTail,
ZtReplaceListlndex, ZtReplaceListObject,
ZtReplaceListTail

ZtFreeArgList

OCTOBER 1990 HEWLETT-PACKARD JOURNAL 13

Create and Free ObJects
Objects are created using the function ZtCreate. Any attri-

butes that are required to be different from the defaults can
be passed in the object ArgList when calling ZtCreate. For all
the attributes not included in the object ArgList, the M I will
automatically set them to defaults. Once an object exists,
multiple copies of this object can be made by cloning it
with the function ZtClone. Ztclone also allows the users to
alter some of the attributes of the newly cloned objects in
the same call.

The following example shows the creation of two text
objects with one fixed size, different text strings, and differ-
ent positions on the display. Fig. 3 shows the data organi-
zation resulting from this example.

Text Objects (ZtTEXT-OBJ) Point Objects
f.*"#W.#7 no I\

teal-Id +

-4 I

textL ld -+
ztx 10.0
mv ann

int return-Val;
Ztld text1 -Id, textilld, pointld; P object identifiers '1
P arglist for text object (containing attribute-value pairs) *I
static REAL64 h, w;
staticZtArgListltem textArglist [] =

ZtHEIGHT, (ZtValueType)&h, r text height
ZtWIDTH, (ZtValueType)&w, 1' textwidth
ZtPOINT, (ZtValueType)NULL, I" Ztld for point
ZtSTRING, (ZtValueType)NULL, P text string
NULL, (ZtVa1ueType)NULL

1;
T arglist for point object
static REAL64 x, y;
static ZtArgListltem pointArglist [] =

I
ZtX, (ZtValueType)&x,
ZtY, (ZtValueType)&y,
NULL, (ZtVa1ueType)NULL ;

Fig. 3. Data organization for text objects created with the
function Ztcreate or Ztclone.

int return-Val;
Ztld textl-Id, textilld, pointld; /" object identifiers'/
r arglist for text object (containing attribute-value pairs *I

.

.

. previous example.

The text Arglist and the point
Arglist are the same as in the

arglist for cloned text object
StaticZtArgListltem cloneArglist [] =

ZtPOINT, (ZtValueType)NULL,
ZtSTRING, (ZtValueType)NULL,
NULL, (ZtVa1ueType)NULL

1
P create reference point for objects

x = 1o.o;y = 10.0;
pointld = ZtCreate(ZtP0INT-OBJ,pointArglist, NULL);

*I
. The reference points and the first
. text object are created the same as
. in the previous example.

I*
I*

setup to create first text objectwith height = 20 and
width = 40
h = 20.0; w = 40.0;
textArglist[2].ZtValue = (ZtValueType) pointld;

*I
' I

r
r

create the second text object at (1 0,60) using the
ZtClone function
y = 60.0;
retumval = ZtChange (pointld, pointArglist, NULL);
cloneArglist[O].ZtValue = (ZtValue Type)pointld;
cloneArglist[l].ZtValue = (ZtValueType) "Second text object";

*

textArglist[3].ZtValue = (ZtValueType) "First text object";
create the first text object
textl-Id = ZtCreate (ZtTEXT-OW, textArglist, NULL);

change point components *I
y = 60.0;
return-Val = ZtChange (pointld, pointArglist, NULL);

"I I*

r
t e w l d = ZtClone (Textl-Id, cloneArglist,
NULL);

P create second text object at (1 0.0,60.0) *I
textArglist[3].ZtValue = (ZtValueType) "Second text object";
textilld = ZtCreate (ZtTEXT-OW, textArglist, NULL); r free point object if it is no longer needed

ZtFree (pointld, NULL);
I* free point object if it is no longer needed

ZtFree (pointld, NULL); ZtClone is particularly useful for models and composite
objects. With one call, the model or the composite object
and its descendants can be duplicated. A call to ZtClone can
be modified to control the depth of cloning for a list of
objects. In the following example there are two model ob-

Instead of calling ZtCreate twice, the function ZtC~one can be
used to create the second text string object:

14 HEWLETT-PACKARD JOURNAL OCTOBER 1990

i WWW. H PARCH IVE.COM

jects that have identical properties except for the back-
ground and foreground colors. The first model object has
been created with the child list modell Id. Instead of repeating
the same process for the second model modei2ld, Z t C h is
used with the function Arglist containing the ZtRECURSlVE
attribute set to TRUE. The call ZtChange() changes the colors.

int retval;
Ztldmodell Id, model2ld;
I* objectArglistforcolors '1
staticZtArgListltem ColorArglist [] =

{
ZtBACKGROUND-COLOR,(ZtValueType)red,
ZtFOREGROUNDCOLOR,(ZtValueType)black,
NULL,(ZtValueType)NULL

1;
P functionArglistfor recursive attribute '1
static ZtArgListltern recursiveArglist [] =

{
ZtRECURSIVE,(ZtValueType)TRUE,
NULL,(ZtValueType)NULL

model2ld = ZtClone(model1 Id, NULL, recursiveArglist);
retval = ZtChange(model2ld,colorArglist,

recursiveArglist);

Cloning nonrecursively (ZtRECURSlVE = FALSE] can be
used in cases where objects need to be referenced but copies
of these objects are not needed. Fig. 4 shows the data struc-
ture that would result after nonrecursively cloning the ob-
jects referenced by the linked list called Listl. Instead of
copying the objects, a new linked list (Lisa) of pointers is
created for referencing the objects. The original and newly
cloned list will dereference the same objects. HP IVIBuild,
the builder component of HP IVI, makes use of this option
of ZtCione to duplicate lists of selected objects. The cloned
lists are manipulated through the use of list functions to
provide the undo and backup capabilities of HPMBuild (see

When an object is no longer needed, the function ZtFree
can be used to free all memory allocated for the object.
Arglists can also be freed using the function ZtFreeArgList. This
function will free all memory associated with the Arglist
including the additional memory allocated for attributes.

Manipulate Attributes
Most attributes of existing objects can be modified. For

example, in an application in which a text object contains
a string that indicates elapsed time, the time needs to be
updated periodically. ZtChange can be called passing the
new value of the elapsed time in the ZtSTRlNG attribute of

is changed for all objects referenced by the identifier listld.

I' arglist for foregrourrd &or */
static ZtArgListltern fgcArglist [] =

{
ZtFOREGROUND-COLOR, (ZtValueType)NULL,
NULL, (ZtVa1ueType)NULL

1;
int return-Val;

fgcArglist[O].ZtValue = (ZtValueType) steelblue
P Steelblue is the index into the system object'scolor list
P (the ZtCOLORLlST attribute on the ZtSYSTEKOBJ).
/* change the color to steelblue

return-val = ZtChange (listld, fgcArglist, NULL);

Default values can also be changed with the same call.
To change the value of a default attribute, the object type
and not the objectld must be sent to ZtChange. For instance,
if at some point in the program it is desired to have all the
windows have a red background instead of the default blue,
a call could be made to ZtChange with the object type set
to ZtWINDOW-OBJ instead of the objectld.

'P Information about the current value of an object's attri-
butes or the default values can be obtained by making use
of the Zauery call. If required, API will handle the space
allocation for the queried values. The following code frag-
ment is requesting information on a pushbutton object.

int return-Val;
char 'querystr;
I' arglist for querying string *I
static ZtArgListitem qstringArglist [] =

{
ZtlABELSTRING, (ZtValueType)NULL,
NULL, (ZtVa1ueType)NULL

A q y of the pushbuttonid's label string will be returned in querystr *I
after the ZtQuery call. A return value of FALSE indi tes that *I
memory could not be allocated or an invalid pointer is *I

1;
I*
I'
P
P specified in pushbuttonld. =I

retumval = ZtQuery (pushbuttonld,qstringArglist, NULL);
querystr = (char') qstringArglist[O].ZtValue;

I" the following call freesthe memory allocated for ZtlABELSTRlNG *I
P in the ZtQuery call. *I

ZtFreeArgList(qstringArg1ist);

Save and Retrieve Objects
The ztsave function allows users to save objects in a file.

the object Arglist.
ZtChange also provides a way to modify several objects

in one call. The user simply has to put all the desired
objects into a list and issue a ZtChange call on the list object.
The changes will be made to all objects that the list refer-

c ' ences. In the following code fragment the foreground color

VVVVVV HPARCHIVF COM

' I - I - I:
Fig. 4. Cloning lists of objects nonrecursively.

OCTOBER leg0 HEWLEITPACKARD JOURNAL 15

A filename can be specified by the user in the function
Arglist. If the file exists, the user also has the option to
overwrite the existing file. Objects or defaults of one appli-
cation can be retrieved easily in another application with
the ZtRestore call. In the following example the window
windowld is saved into a file named windfi1e.w.

int return-Val;
Ztld windowld
I* filename arglist *I
static ZtArgListltem saveArglist[] =

{
ZtFILENAME, (ZtValueType)"windfile.w",
ZtOVERWRITE, (ZtValueType)TRUE,
NULL, (ZtVa1ueType)NULL

return-val = ZtSave (windowld, saveArglist)

Locate Objects
The capability of locating the closest object near a user-

defined point in a window is provided by the function
ZtFindByLocation. Users can control the aperture of the search
(i.e., how close or how far from the point) and the depth
of the search (i.e., whether or not the action should be
recursively applied down to primitive objects within any
model or composite object). For example, a row-column
object contains a pushbutton object, a text object, and a
scrollbar object. A mouse click (i.e., a button event) gener-
ated on the pushbutton will cause ZtFindBylocation to return
the Ztld of the pushbutton if the function Arglist contains the
value TRUE for the ZtRECURSlVE attribute. If ZtRECURSlVE is
set to FALSE, the return value of ZtFindByLocation will be the
Ztld of the row-column object instead of the pushbutton
(see Fig. 5).

ZtFindByAttribute also enables the user to match objects that
have certain properties. For example, if an application
creates a large number of objects and some of them are
invisible, to find all the invisible objects, the ZtFindByAttribute
function is used on the window object, passing an object
Arglist with the ZtVlSlBLE attribute set to FALSE.

Receive Input Functions
Input events like button and key presses can be collected

using the function ZtDo(Objectld, ZtlNPUf, NULL). Where object-
Id is the Ztld of a system object and ZtlNPUT is the action for
ZtDo to do. The input-handling ZtDo function retrieves the
events and dispatches them to the appropriate callback
function so that the user-defined action can be executed.
User input can be collected continuously or in a single pass.

Visual Update Functions
In addition to getting input, ZtDo provides several other

actions. It provides the capabilities to update, draw, re-
draw, flash, erase, raise, and lower objects on the display.
The following is a list of the different operations possible
with the ZtDo function.

16 HEWLETT-PACKARD JOURNAL OCTOBER 1990

P redraw all objects whetheror not they have been modified
ZtDo(systemld, ZtREDRAW, NULL):
I* draw a window
ZtDo(windowld, ZtUPDATE, NULL);
I* flash anobject on thedisplay
ZtDo(pushbuttonld, ZtFLASH, NULL);
P flash the objects on a list
ZtDo(listld, ZtFLASH, NULL);
I* erase a rectangle object
ZtDo(rectangleld, ZtERASE, NULL);
I* erase a list of objects
ZtDo(listld, ZtERASE, NULL);
I* draw a text object whether or not it has been modified
ZtDo(textld, ZtDRAW, NULL);
P draw a list of objectsother than low-level objects
ZtDo(listld, ZtDRAW, NULL);
I* raise a window
ZtDo(windowld, ZtRAISE, NULL);
I* lower a window
ZtDo(windowld, ZtLOWER, NULL);

Two modes of updating or drawing objects on the display
are possible: immediate update and deferred update. In
immediate update mode the windows are redrawn anytime
there is a visual change in the objects. In the deferred mode,
the process of redrawing windows can be postponed until
an explicit update is performed through ZtDo(... ZtUPDATE ...),
or a change in the update mode. This mode is useful if
changes need to be made to many objects and it is only
necessary to refresh the window once. Both modes are
activated by setting the system object's update attribute to
either immediate or deferred. The following code puts the
system object in the deferred update mode.

I* update mode arglist for system object *I
static ZtArgListltem UpdateModeArgIist [] =

{
ZtDEFERUPDATE, (ZtValueType)TRUE,
NULL, (ZtVa1ueType)NULL

1;
Ztld systemld, windowld;
int return-Val;

Mouse Event
I (rowcolumnid)

ZIRECURSIVE

FALSE
TRUE

Ztld Returned from ZtFindByLocation

rowcolumnld
Dushbuitonld

Fig. 5. Locating an object with ZtFindBylocation. When a
mouse event happens over the pushbutton, if the ZtRECURSlVE
attribute is FALSE the identifier for the row-column object
(rowcolumnld) is returned. If the ZtRECURSlVE attribute is TRUE,
the function searches for the primitive object in the area and
returns the identifier for the pushbutton (pushbuttonid).

e application, set update mode to deferred *I
return-val = ZtChange (systemld, UpdateModeArglist, NULL);

P now it is necessary to redraw one of the windows '1
return-val = ZtDo (windowld, ZtUPDATE, NULL);

List Manipulation Functions
The MI list manipulation functions allow programmers

to create and manipulate lists of objects.
Creating an Object List. The following example creates a
list of two points using the function ZtCreateList (see Fig. 6).

P arglist for point object 'I
static REAL64 x, y;
static ZtArgListltem pointArglist[] =

{
ZtX, (ZtValueType)&x,
ZtY, (ZtValueType)&y,
NULL, (ZtVa1ueType)NULL

I" Identifiers for pointer objects 7
Ztld pointl Id, point2ld, pointlist;
/'Identifiers for pointer objects '1
P create a point at (50.0,50.0) *I

1;

x = 50.0, y = 50.0;
pointl Id = ZtCreate (ZtPOIM-OW, pointArglist, NULL);

x = 60.0;
point2ld = ZtCreate (ZtPOINT-OW, pointArglist, NULL);

pointlist = ZtCreateList (ZtLIST-OBJ, pointl Id, point2ld, NULL);

Freeing a List. When the list of objects is no longer needed,
it can be freed. The application has the option to free the
list along with all the objects it references, or to free the
list but retain the objects.

P create another point at (60.0.50.0) ' I

P create the list for these two points *I

P free the point list (pointlist) in the example above *I
int return-Val;
static ZtArgListltem recursiveArglist [] =

{
ZtRECURSIVE, (ZtValueType)TRUE,
NULL, (ZtVa1ueType)NULL

1 ;

P free the list and its references, the two point objects */
recursiveArglis~O].ZtValue = (ZtVa1ueType)TRUE;
retumval = ZtFree(pointlist, recursiveArglist);

1' free the list but leave the two point objects alone "I
recursiveArglist[O].ZtValue = (ZtVa1ueType)FALSE;
return-val = ZtFree(pointlist, recursiveArglist);

Bookeeping. Three API functions are provided for retriev-
ing information about list objects. These functions include:

ZtCheckListObject for verifying the presence or absence of
an object in a list.
ZauntList for counting the number of objects in a list.
ZtGetListlndex for determining the position of an object

in a list.
Extraction. An object can be extracted from a list of objects
by invoking ZtGetListObject and specifying the index of the
object, or by using the function ZtGetListTail to extract the
last object in a list.
Insertion. Objects can be inserted into a list by using:

Ztlnsertlistlndex to place the object at a specified index
ZtlnsertListObject to place the object before an object with
a known identifier
ZtlnsertListTail to place the object at the end of a list.
These functions can be used to add an object to the child

lists of windows, models, or composite objects. The follow-
ing code fragments demonstrate using these functions. Figs.
7a and 7b show the results of the ZtlnsertListlndex and the
ZtlnsertListObject examples respectively.

P insert an object at location two in list pointListld "1

pointld;
Ztld pointlistld, pointl Id, newpointlistld, insertpointld, refpointld,

int ret;

1' pointListld : the Ztld of a ZtLIST-OBJ to insert the object into *I
/* *I
P *I
I" fails, the original pointlistld is returned '1
I* in newpointlistld. If the function succeeds, 7
P the new list is returned in newpointlistld. */

pointl Id : the Ztld of the object to insert into the list
newpointlistld: the Ztld of the new list. If the function

objlndex =2;
ret = ZtlnsertListlndex(pointListld, objlndex, pointl Id,

&ewpointListld);

P insert an object (insertpointld) into a list (pointListld) *I
P in front of another object (refpointld) =I

ret = ZtlnsertListObject(pointListld, refpointld,
insertpointld,&newpointListld) ;

P add a point object (pointld) to the end of a point list
I' (pointListld)

ret = ZtlnsertListTail(pointListld, pointld, &newpointListld);

*I
*I

Merging Lists. A list of objects can be merged into another

Ttx 50.0 I
RY 50.0 I

!! ' I I point-list

Fig. 6. Data organization illustrating a list of two points
created with the function ZtCreateList.

OCTOBER 1990 HEWLETT-PACKARD JOURNAL t7

list by using:
ZtMergeListlndex to place the list at a specified index

w ZtMergeListObject to place the list before an object with a
known identifier

w ZtMergeListTail to place the list at the end of a list.
In the following example three objects of type ZtLIST-OBJ

are used to illustrate merging lists. Listld references three
objects (objectl Id, object2ld, object3ld), Mergeld references two
objects (objectllld and objectSd), and Newlistld is the list object
obtained by merging Listld and Mergeld (see Fig. 8).

I' Using ZtMergeListlndex to insert all objects of Mergeld *I
/* into Listld between objectl Id and object2ld 'I

Ztld Listld, Mergeld, Newlistld;
int retval;
INT32 listindex = 1;

retval = ZtMergeListlndex(Listld, listindex, Mergeld,

I* Using ZtMergeListObject to insert all objects of Mergeld into */
/* Listld in front of object2ld "1

&Newlistld);

Ztld Listld, Mergeld, Newlistld, object2ld; int retval;
retval = ZtMergeListObject(Listld, object2ld, Mergeld,

&Newlistld);

indexes 0

objlndex

1 2 3

Removing Lists. Objects can be removed from a list by
using:
w ZtRernoveListlndex to remove an object at a specified index
w ZtRernoveListObject to remove an object before an object

with a known identifier
w ZtRernoveListTaii to remove an object at the end of a list.

Children of windows, models, or composite objects can
be deleted by invoking these functions on the list object
specified in the ZtCHILD-LIST attribute.

Replacement. An object can replace another object using:
w ZtReplaceListlndex to place the object at a specified index

ZtReplaceListObject to place the object before an object with

ZtReplaceListTail to place the object at the end of a list.
a known identifier

replace a point object at the index position of a point
list (pointListld) with a new point object (newpointlD)

'1
"1

pointListld :the Ztld of a ZtLIST-OW to replace the *I

newpointid : the Ztld of the object to replace the indexed *I

replacedld : the Ztld of the replaced object. This variable
may be given as NULL if this return value is
not of interest. *I

object in *I

object with *I

4

-1

18 HEWLETT-PACKARO JOURNAL OCTOBER 1m

WWW.HPARCHIVE.COM

Fig. 7. (a) Inserting the object
pointld in the list pointlistid at index
2. (b) Inserting the object insert-
pointid into the list pointlistld in front
of the object refpointld.

r

1

Ztld pointlistld, replacedld, newpointld;
INT32 objlndex = 2;
int ret;

ret = ZtReplaceListlndex(pintListld, objlndex, newpointld,
Breplacedld);

The next code fragment illustrates using ZtReplaceListObject "I
The object identifiers have the following meanings: *I
pointlistld : same as above "I
pointindex-Id: the Ztld of the object to replace *I
newpointld : the Ztld of the object to replace pointindex-Id *I
replacedld : same as above *I

ret = ZtReplaceListObject(pointListld, pointindexld,
newpointld, replacedld);

replace the tail object of a point list (pointListld)
with a new point object (newpointld)

*I
=I

ret = ZtReplaceUstTail(pointlistld, newpointld, &replacedid);

Grouping and Reparenting Objects
Using the methods and techniques described so far, ob-

jects can be created and grouped together to form an object
hierarchy like the one shown in Fig. 1. This is accomplished
using model objects or composite objects. Model objects
allow an application to group together composite objects,
primitive objects, and other model objects into one group.
They are invisible container objects and they do not own
any visual attributes. Composite objects have visual attri-
butes and they make it possible to group together primitive
widget objects and other composite objects. Examples of
composite objects include menus, menu panes, row-col-
umns, and scroll lists. There are two ways of creating model
or composite objects in MI: creating objects with the child
list attribute (ZtCHILD-LIST), or assigning a group of objects
to another parent.

object4ld objectlld

objectlld obiect2ld object3ld

CMthlg CompoSbS With ZtCHlLDllST
Using ZtCHILDIIST, model and composite objects and

their descendants can be created either top down or bottom
UP.
Top Down. The composite object is created with NULL as-
signed to the child list attribute ZtCHILD-LIST. It then be-
comes the current composite object and all newly created
primitive objects will automatically become the compos-
ite's children. For example, to create a menu system from
the top to the bottom, start from the top of the menu hierar-
chy and work down creating children. This process is sum-
marized in the following steps:

Create the menu object ZtMENU-OM with the ZtCHILD-LIST
attribute set to N U U . This will make the menu the current
composite object.
Create a menu pane object ZtMENUPANLOBJ. This will
make the menu pane a child of the menu object and also
make it the current composite object.
Create the menu button objects. This will make the menu
buttons children of the menu pane.
Change the attribute ZtCURRENT-COMPOSITE on the sys-
tem object (ZtSYSTEM-OBJ) to the menu object created in
the first step. This will make the menu the parent of the
next menu pane.
Repeat the last three steps until all the menu panes and
menu buttons are created.

Bottom Up. To create a composite object from the bottom
up, create all primitive objects, put them in a list, and then
create the composite object setting the ZtCHlLDllST attribute
to the Ztld of the object list. For example, to create a menu
system from the bottom up, start from the bottom of the
menu object hierarchy, making the newly created objects
children of objects higher in the menu hierarchy. This pro-
cess is summarized in the following steps. . Create a group of menu buttons and put them in a list

object ZtLIST-OW.
Create a menu pane with the ZtCHILD-LIST attribute set
to the Ztld of the ZtLIST-OW created in the first step.

. w I V E . C O

Flg. 8. Merging lists. The objects
on list Mergeld are merged be-
tween the first and second objects
of list Listld resulting in a new list

objectlld object4ld objsct5ld object2ld object3ld Newlistld.

. Repeat the first two steps until all the menu panes and
menu buttons are created.
Put all the menu panes into a list object. . Create the menu object with the ZtCHILD-LIST attribute
set to the newly created ZtLIST-OBJ from the previous
step.

Reparenting
In API it is not necessary to destroy all the objects created

and start all over when the user wants to change the objects'
relationships. Regrouping objects by changing relation-
ships is called reparenting. The ZtChange function makes
the task of regrouping very easy. The new child list is
simply passed to the desired parent object, and the API
takes care of removing the targeted children from the old
parent's child list and assigning them to the new parent.
For example, the following code segment moves the
pushbutton object PushButton 1 from Model 2 to Model 1, and
inserts PushButton 1 into the child list of Model 1.

Ztld pbl Id;
Ztld modell Id;
Ztld childlistl Id;
INT32 ret;

I* PushButtonl Id *I
I* Model 1 Id *I
I' Model 1 childlist *I
/* Returnvalue */

static ZtArgListltem childlistArglist [] =

I
ZtCHILD-LIST, (ZtValueType)NULL,
NULL, (2tValueType)NULL

1;

T get the current childlist of Model 1 'I
ret = ZtQuery (modell Id, childlistArglist, NULL);
if (ret)
I

childlistl Id = (Ztld) childlistArglist[O].ZtValue;

I* add pushbutton pbl Id to the end of the childlist of model 1 ' I
ret = ZtlnsertListTail (childlistl Id, pbl Id,

if (ret)
&childlist1 Id);

I' Change modell Id's childlist to include the pushbutton pbl Id *I
T *I

ret = ZtChange (modell Id, childlistArglist, NULL);
The API automatically updates the childlist of model 2

1

Freeing Model or Composite Objects
The counterpart of cloning model and composite objects

recursively or nonrecursively is the ability to free these
objects from the intermediate parent. Take the case of an
application in which one of its model objects has a row-
column object as one of its children. Suppose the applica-
tion requires that the row-column object be freed, but the
children of the row-column object must remain. The API
provides an option in the ZtFree function that allows the
user to accomplish this task. Setting the ZtRECURSlVE attri-
bute in the function Arglist to FALSE, and calling ZtFree on
the row-column object, destroys the row-column object,
and its children become the children of the model object.
In contrast, passing a function Arglist to ZtFree with ZtRECUR-
SlVE set to TRUE will free the row-column object and its
children.

Symbols and Models
Models can be created as children of other models. A

model within another model is called a submodel. For
example, in Fig. 1, Model 21 is a submodel of Model 12. The
user can create a symbol library out of submodels. Cus-
tomized sets of commonly used symbols can be created,
saved, and reused as submodels.

Conclusion
Based on an object-oriented framework, the API consists

of a simplified yet powerful set of functions for creating
and activating user interface components. The application
developer can learn to use these routines within a short
time. The developer is also able to combine the dynamic
animation capabilities of graphics and the flexibility and
interactive capabilities of widgets to enhance user inter-
faces for process control applications. Models of physical
objects such as machinery and instrumentation can be
created to provide context-specific information that the
end user can react to more quickly than with a standard
terminal-oriented interface.

20 WEWLETT-PACKARD JOURNAL OCTOBER 1990

ki Www. H PARCH IVE.COM

HP IVI Application Program Interface
Design
To provide the features available in HP IVI, the internal
design and implementation of the application program
interface leveraged concepts and software from graphics
packages, window technology, widgets, Xt Intrinsics, and
object-oriented design.

by Pamela W. Munsch, Warren 1. Otsuka, and Gary D. Thomsen

NE OF THE MAIN goals of the HP Interactive Vis-
ual Interface (HP NI) project was to leverage fea- 0 tures from current user interface and software de-

sign technologies and blend the best of each into the feature
set and design of the application program interface (API)
functions. In doing so, the project team investigated win-
dowing, graphics, the X toolkit (Xt Intrinsics), widgets, and
object-oriented design. This article discusses the features
used from each of these technologies, and how these fea-
tures are incorporated into the internal design and im-
plementation of the API functions (see Fig. 1).

Windowing
To hide the complexities of the X Window System's2

from HP M application developers, the API provides a
layer of simplifying software over X. The only X features
left exposed are those that we thought the application de-
veloper must have access to, or that cannot be layered over.
Even with this layer of software, the user still has access
to X functions. For example, X provides an event called
ConfigureNotify that tells the application that a window has
been resized, moved, or changed in some way. The API
handles resizing the window object when this event occurs
but lets the application decide if all the objects in the win-
dow should be resized to match the new window's size,
or if the objects should maintain their sizes and only the
coordinate system of the window should be adjusted. The
user still has direct access to the X functions if they are
needed.

The API also ensures that all X events (e.g., a mouse
button press and release) that occur in a window object
are sent to the application. This is done through callback
techniques based on the Xt callback mechanism. There are
also mechanisms and data structures to provide a linkage
between X event data formats and API data formats.

Graphics
Most graphics packages, such as Hewlett-Packard's Star-

base graphics package,3 provide coordinate systems that
allow users to write device independent graphics programs.
Since creating a user interface with the X Window System
is currently done using pixels, the API project team decided
to provide API functions that enable user-interface design-
ers the same type of device independent coordinate system

features as offered by Starbase.
Graphics packages provide coordinate systems that:
Communicate with a particular device (device coordi-
nates)
Provide display resolution independence (normalized
or virtual device coordinates)
Allow the user to work in a system that reflects their
world (world coordinates)
Allow users to move, scale, or rotate images easily with-
out recalculating the placement and size of the image
(modeling transformations).
Device coordinates (DCs) are the coordinates used to

write to a device. For the X Window System, device coor-
dinates are defined in pixels.

Virtual device or normalized device coordinates (NDCs)
provide a means to gain independence from the resolution
of the display. This coordinate system maps the width and
height of a display to the coordinate range from 0.0 to 1.0.
Normalized device coordinates define a viewport. A view-
port is a rectangular drawing region on the display surface.
Specifying the viewport in NDCs maintains the ratio be-
tween the drawing area and the display size regardless of
the display resolution.

World coordinates provide a user-defined coordinate
system. This system allows users to create pictures using
the most appropriate coordinate system for the task. For
example, if the world coordinates represent the physical
dimensions of a factory, using the dimensions from a blue-
print of the factory to create a picture is straightforward.
World coordinates define which area of the unbounded

API Functlons

API Int.mal Tachndogios

0 Graphics
0 Wlndows

Widgets
Xt Intrlnslcs
0bjectOrhnt.d Design

Fig. 1. The software technologies incorporated into the inter-
nal design and implementation of the UP /VI application pro-
gram interface (API).

OCTOBER 1990 HEWLRT-PACKARD JOURNAL 21

world coordinate space is visible in the viewport. This type
of coordinate system also provides viewport-size indepen-
dence and display-resolution independence since the
world coordinates remain the same regardless of the phys-
ical size or resolution of the display.

Modeling transformations allow the user to define a
slightly different view of the world coordinates for each
piece of the picture. Modeling transformations are geomet-
ric transformations such as scaling, rotation, and transla-
tion (movement). This feature allows the user to draw an
object and then reuse it in the picture by moving, scaling,
and rotating it to fit the requirements of the picture.

These three coordinate systems and the modeling trans-
formations are linked together when an object is drawn.
First, the object is transformed by its modeling transforma-
tions to the desired orientation in the world coordinate
system. The world coordinates are scaled and translated
to fit into the viewport and converted to normalized device
coordinates. Finally the normalized device coordinates are
converted to device coordinates to draw the picture in the
viewport. These transformations are shown in Fig. 2.

Widgets and Xt Intrinsics
The widgets (pushbuttons, scrollbars, etc.) and the Xt

Intrinsics provide the basis for the API input model and
for other API features. The API project team took the input
loop from Xt Intrinsics and added processing to handle
API graphics objects. Also leveraged from the Xt Intrinsics
are the methods for getting file descriptor input and time-
outs. An extension of the Xt callback technique allows
users to attach functions to window objects to handle X
events and to API graphic objects, which include geometric
figures such as circles, arcs, and rectangles, to handle
mouse button events.

To keep the number of API functions low, API parameter
handling is patterned after Xt Intrinsic Arglists. The API
Arglists are arrays of attribute and value pairs. This feature
frees the application from having fixed parameter lists that
force it to make many calls. The application also doesn’t
have to pass unnecessary parameters. Parameters that it
doesn’t pass are automatically defaulted. One deviation
from the Xt Intrinsic Arglist is that the API uses a null-termi-
nated list instead of a counted list. The API also extends

XtMalnLoop

+ Get Next X Event
XtbxtEvent (a event) - @.e., button press)

Call Event
Processing Function

J
XtDlrpatchEvent (& event)

I

Fig. 3. The Xt lntrinsics XtMainLwp function.

the attribute default concept so that the application can
change the defaults of different classes of objects at run
time. API Arglists are described in the article on page 11.

Object-Oriented Design
HP IVI is an object-oriented system. Object-oriented de-

sign and object-oriented programming are being increas-
ingly used at HP for software product de~elopment .~.~ The
goals of object-oriented methods are very appealing be-
cause they encourage such practices as code reuse and
functional cohesion of software components (objects).
Also, once a stable and reliable library of objects is avail-
able, software development and maintenance costs should
be reduced. In the API a special utility was used to create
an object-oriented environment from C language programs.
The box on page 29 describes some basic object-oriented
concepts and an overview of the API object-oriented envi-
ronment. The special utility used for creating the object-
oriented environment is described later in this article.

Input Handling

The input handling model for the API is based on X, Xt
Intrinsics, and widgets. The Xt Intrinsics provide a way to
call application functions when certain events occur. These
functions are called callbacks and are attached to widgets.
The Xt Intrinsics provide input handling capabilities for
X events, time-outs, and file descriptor input through the
XtMainLmp function. This function consists of an infinite
loop calling XtNextEventO to get the next event and XtDis-
patchEvent0 to send the event to the appropriate processing
function (see Fig. 3). Because the API provides several spe-

1

0

Flg. 2. The coordinate systems
and the transformations involved
in transforming an object from
world coordinates to device coor-
dinates. 1023,767

22 HEWLm-PACKARD JOURNAL OCTOBER 1990

WWW. H PARCHIVE.COM

cia1 input features the project team implemented its own
version of XtMainLoop.

The basic API input loop consists of an HP-UX select()
call to see if input exists on either the user's file descriptors
or the API server object's file descriptors and a test to see
what events came in (see Fig. 4). If input is pending on the
file descriptor for the X server a message is sent to the API
server object to process all X events queued. If input is
pending on a user's file descriptor the user's callback func-
tion is invoked.

The server object still does the XtNextEvent() and XtDis-
patchEvent0 looping but it has additional code to handle
conversion of X callback information to API format,
callbacks on graphic objects and window objects, Expose
and ConfigureNotify events on window objects, global
callbacks, and event grabbing (see Fig. 5).

I

Callback Handling
Callbacks are implemented as objects in the API. These

objects contain a pointer to the user-written function to be
called when an X event occurs, a pointer to callback-spe-
cific data, and the specific reason that will cause the
callback to invoke the user function (see Fig. 6). The file
descriptor that is checked during input processing is an
example of callback-specific data. The reason for the invo-
cation of the callback is an integer value that indicates the
type of input event such as a button press. These callback
objects are put in a list called a callbacklist and are attached
to the object requiring them. For the Xt Intrinsics, the
callbacks are attached to specific-reason resources instead
of one central callback list. The API method of handling

Scan for Input
File Descriptors

(select ())

n Call User
Time-Out
Callback

File Descriptor

m

yes,

Flg. 4. The API input loop.

callbacks eliminates having one attribute per callback for
each object type and eliminates having to add and delete
attributes when reasons change. Time-outs and file de-
scriptor callbacks are attached to the API system object,
which stores global attributes and resources. X event
callbacks are registered on the window objects.

The API creates an identifier @Id) for each object that
an application creates. However, the data returned to
callbacks from a widget consists of a widget identifier and
widget-specific data, which is unusable to API applica-
tions. This problem is solved by minifunctions that are
registered with the widgets. These minifunctions are inter-
faces that convert widget-specific data into something that
can be understood and used by the API. When a minifunc-
tion is attached to a widget, the object identifier Ztld is also
attached to the widget. This scheme allows widgets to be
treated like other API objects when widget input is re-
ceived.

L .. I

I Region

3
Window I

, 7-7.'
f N o -

r Grab \

Pending

7 Exit Loop

Fig. 5. The API server object event handling loop.

OCTOBER 1990 HEWLETT-PACKARD JOURNA

Callbacks on Graphics
Graphic objects include shapes such as arcs, rectangles,

and circles. Because graphic objects can be manipulated
the same as windows and widgets in the HP IVI environ-
ment, we decided to have button press and button release
events associated with them. Therefore, graphic objects
need callback functions. For example, an octagon-shaped
graphic object representing a stop sign may require a
callback object with a method for stopping some operation.
Callbacks on graphic objects are handled differently from
widgets. Since the graphic objects are not widgets, the Xt
Intrinsics cannot be relied on to call API functions when
an event occurs on a graphic object. All widget and graphic
objects have a corresponding extent object. The extent ob-
ject consists of two point objects that define a rectangular
region. When associated with an object, the extent defines
the smallest rectangle that encloses an object (see Fig. 7).
When the minifunction for window events detects a button
press or button release, it converts the x,y coordinate posi-
tion of the sprite to a point object. Since the window
minifunction is called, this indicates that the button event
did not occur over a widget (remember the widget mini-
function converts widget data to API usable data). The
button event results in a call to a function to find the object
that is under the point. The function will search the hierar-
chy for an object that has the point in its extent. If a graphic
object is found, the object list is searched to see if there is
a corresponding callback function and if so, the event is
dispatched to the function.

Global Callbacks
A requirement of the API was to detect a function key

press regardless of the location of the sprite in the window.
This was a problem if the sprite was over a widget when
a function key was pressed because widgets grab any input
over them. The project team extended the callback process
so that the window object could also receive the event even
if it was over a widget. This type of callback is referred to
as a global callback.

Global callbacks are implemented by providing an addi-
tional check during the input processing in the server object
(see Fig. 5). After the event is dispatched to the appropriate
object, a check is made to see if global callbacks are enabled.

Callback
Object

If so, the event is dispatched again to the window object
and any global callbacks attached to the window that match
the event are called. For events that were originally over
widgets, the x,y coordinates of the event are recalculated
to be relative to the API window object before dispatching.
Recalculation of widget points is done because the API
understands points relative to the window object coordi-
nate system and not to the widget coordinate system.

Event Grabbing
For customers making their own user-interface builders

and also for HP IVIBuild, a feature was needed to direct
events only to the window. For example, the normal be-
havior for a widget pushbutton object is to flash when it
is selected. However, in the builder, selecting the push-
button may be the start of a move operation on it. To sup-
press normal widget behavior and let the application deter-
mine the meaning of the event, a button press event over
a widget has to be directed only to the window object. The
event has to be grabbed. To solve this problem, input han-
dling at the server object level was modified so that if event
grabbing is enabled, the event is only sent to the window
object for processing.

Window Expose and Resize
When Expose and ConfigureNotify events occur on API win-

dow or graphics objects, special functions are called in the
server object to handle these events. Since graphic objects
are not in individual X windows as the widgets are (see
Fig. a), the window object has to redraw the graphic objects
when an Expose event occurs and resize its children when
a ConfigureNotify event occurs.

For an Expose event, the window object removes all Expose
events for this window from the queue and keeps two lists
of corresponding extent objects. Remember that an extent
object consists of two point objects that define arectangular

p, Graphic Object (a Circle)

5i-l Function

Reason for /
Callback

(Integer Value Representing
Type of Callback) Callback-Specific

Data (e.g., File Descriptors)

Fig. 6. A callback object in the API.

uj Objects

Fig. 7. An API graphic object with an extent for defining the
smallest rectangle around a graphic object. (a) The graphic
object (a circle) in a window and the extent represented by
P, and P2. (b) internal representation of the graphic object.

c

24 HEWLElTPACKARD JOURNAL OCTOBER 1990

G WWW,H PARC H IllE.COM

region. One list contains the extents of each m e event
in device coordinates. This list is used in the server object
to create X clip rectangles when graphics objects in the
exposed region are redrawn. The second list contains ex-
tents of each expose event in normalized device coordi-
nates. After constructing these two lists, the window object
goes through a redraw pass of the objects in the window.
When the graphics objects are told to display themselves,
they check the previous normalized device coordinate clip
list to see if they are in the exposed areas. If they are, they
send a message to the server object to do the X drawing
commands. This scheme ensures that only those objects
that are actually exposed get redrawn by the server object
and it significantly improves performance if exposed ob-
jects are only a small portion of the window.

For ConfigureNotify events, the window object sets the new
window placement and size values. Then during the next
redraw of the window, the objects are redrawn to fit within
the new window size.

Coordinate S

The coordinate system concepts and techniques found
in various graphics packages are incorporated into the API
functions for drawing graphics objects, windows, and
widgets on the display. The user can define the viewing
area in world coordinates (e.g., inches, feet, etc.) and the
API functions transform these coordinates to a window in
the X coordinate system pixels.

A viewport is a rectangular portion of the display onto
which window objects defined in world coordinates are
mapped. Viewports are typically defined in a device inde-
pendent coordinate system called normalized device coor-
dinates, or NDCs. In X a viewport is represented by an X
window, which is defined in device coordinates (DCs). The
API allows users to define the position and size of a window
object (viewport) with NDC coordinates. This allows a win-
dow to be defined as occupying a certain portion of the
total display area independent of display resolution. Map-
ping a window object described in NDCs to the device
coordinates of a display is straightforward. When an appli-
cation initiates drawing to a specific X server, the display
resolution of the server is queried. The NDC values describ-
ing the viewport are multiplied by this display resolution

Graphic ow-

I--7 ; J = Widget Window -
Fig. 8. Widgets are in their own individual windows and have
their coordinates defined relative to these individual windows.
Graphic objects have their coordinates defined relative to the
window object they are located in.

to get pixel values. Since NDCs use the lower-left corner
of the display as the origin and X uses the upper-left corner
as the origin, the y values of the viewport must be sub-
tracted from the height of the display for compatibility
with the X coordinate system, Since this calculation is
done at run time, the application does not need to know
the type of display the app

Consider a window that
(0.0,O.O) to (0.5,0.5) on a display that is 1024 pixels wide
and 768 pixels high (see Fig. Sa). When converted to DCs
as explained above, the window occupies the region of the
display atpixellocations (0,767) to (511,384) (seeFig9b).

The transformation equations for converting from NDCs
to DCs are:

P, = P- x (width of display in DCsh NDC) (1)

P,, = Pym, x (height of display in DCsll NDC). (2)

To take into consideration the upper-left origin of the X
Window System:

P'ym = height of display in DCs - P,. (31

Substituting the values from Fig. 9a into equations 1 and
3 and compensating for the starting pixel yields:

1.0.1.0

(0. " , " . " , \Y.-,O.O) -' I Origin
\

\

(a) 1024 - Pixels 4>> Resolution Display

?l I L (0,384) (511,384)

Fig. 9. (a) Window defined in normalized device coordinates
(NDCs). (b) The same window defined in device coordinates
(DCs) in the X Window System.

wVWV.HPARCHIVE.COM
rn

PI- = 0.0 X 1024/1 = 0
PiyX = 768 - (0.5 X 768/1) = 384
P,, = (0.5 X 1024/1) - 1 = 511
P&,m = 768 - (0.0 X 768/1) -1 = 767.

These coordinate values are shown in Fig. gb.
To define what is drawn within the window object, the

user defines what portion of the world coordinate (WC)

space is viewable in that area. This viewable area can be
changed at run time to perform operations such as panning
or zooming. To draw to the X window representing the
user's window object, the API must convert all values in
WCs into the device coordinates of the display. WCs are
transformed to pixels in a two-step process. The first step
transforms the WCs to NDCs and the second step transforms
the NDCs to DCs.

\

512 Pixels

Viewable Area in WCs

Pumhbutton

(10.0,85.0) (110.0,85.0)
Display ____-----

Viewport for
Window (10.0,47.5) (80.0,47.5)

Ruh-
button

Defined in

(10.0, I ".", ,"".",I 0.0) (1 10.0,~O.O)
1 --

, I _ I

Fig. 10. (a) The viewable area of the world coordinate window is defined to occupy the
upper-right quadrant of the display. (b) Results of applying the x and y scale factors to the
pushbutton coordinates. (c) Results of applying translation factors to the scaled pushbutton
coordinates. (d) Results after applying the flip factor tc compensate for the X window origin in
the upper-left corner of the NDC space. (e) Results after transforming the pushbutton from

NDCs to DCs.

#I HEWLETT-PACKARO JOURNAL OCTOBER 1990

Every window object contains a viewport-to-window
transformation matrix (VTM). This matrix describes how
to scale and translate the viewable WC region to fit within
the window. A scale factor (SF) is calculated to scale the
WC width and height to the width and height of the view-
port. This scale factor for the x coordinate is:

SF, = width of the window in NDCstwidth of the
viewable WC region in WCs

For the pushbutton exmple the translation factors are:

T, = - 0.005 X 10 = - 0.05 NDCS
T, = - 0.0067 X 10 = - 0.067 NDCS.

Adding the translation factor to the NDC points P, and P,
results in:

P1, = 0.05 - 0.05 = 0 NDCS
Pzx = 0.3 - 0.05 =0.25 NDcS

and for the y coordinate is

SF, = height of the window in NDCstheight of the
viewable WC region in WCs.

For example, in Fig. 10a the viewable area of the world
coordinate window is defined to occupy a viewport in the
upper-right quadrant of a display. The scale factors for
mapping the WC region to NDCs in this example are:

SF, = (1 - 0.5)/(110 - 10) = 0.005 NDCSNVC

and for the y coordinate

SF, = (1 - 0.5)/(85 - 10) = 0.0067 NDCslWC

To transform the pushbutton coordinates shown in Fig.
10a from WCs to NDCs:

Pi, = 10 X SF, = 0.05 NDCS
Pzx = 60 x SF, = 0.3 NDCS

Ply = 10 x SF, = 0.067 NDCS
P,, = 47.5 X SFy = 0.318 NDCS.

Fig. lob shows the pushbutton scaled to NDC coordinates.
The NDC system maps the coordinate (0.0,O.O) to the

lower-left corner of a window. Therefore, if the viewable
WC region does not map the coordinate (0.0,O.O) to the
lower-left corner of the window, a translation factor is
added to the NDC coordinates. The translation factors are
computed as:

T, = - SF, X (WC, origin)
T, = - SF, X (WC, origin)

A B C

Widget Scaled
Smaller

Fig. 11. The effects of scaling widgets larger and smaller
around characters.

Ply = 0.067 - 0.067 = 0 NDCS
P,, = 0.318 - 0.067 = 0.25 NDCS.

Fig. 1Oc shows the results of the translation.
Like most graphics packages, the API follows the conven-

tion of defining the origin in the lower-left corner of the
drawing area. However, because the X Window System
defines the origin to be the upper-left corner, an additional
translation factor (or flip factor) must be added in the y
direction to move the origin from the lower-left to the
upper-left corner.

The NDC height for the window in which the pushbutton
in Fig. 10 resides is 0.5 NDCs. Compensating for the flip
factor (F) results in:

Pfly = F - P,, = 0.5 - 0.25 = 0.25 NDCS
P'2, = F - PI, = 0.5 - 0.0 = 0.5 NDCS

and
PflX = 0.0
Pfzx = 0.25.

Fig. 1Od shows the result of applying the flip factor.
The scale factors, the translation factors, and the flip

factor are incorporated into the viewport-to-window trans-
formation matrix VTM. Combining all the transformation
factors in one matrix and performing the transformation
operations looks like:

smvw oqw
(Intarfaco to X,

Xt Intrlnshx, and ..-. . .

I

.
Device

Layer
) Independent

Device

Layer
) Dependent

Flg. 12. The layers of the API architecture.

OCTOBER 1990 HEWCETT-PACURD XXlRNM

PXNDC PyNDC 11 = Pxwc pywc 11 SFX 0 [0 -SF, :]
Tx (-Ty + F) 1

Fig. 10e shows the final transformation of the pushbutton
NDCs to X window device coordinates. The coordinate
points shown in Fig. 10e are derived by substituting the
values from Fig. lod into transformation equations 1 and
2 and compensating for the starting pixel.

PI- = 0.0 X 1024/1 = 0
PlYDc = 0.25 X 768/1 = 192
P Z a c = (0.25 X 1024/1) -1 = 255
PZ,,: = (0.5 X 768/1) - 1 = 383.

Modeling Coordinates
The API provides modeling transformations that allow

any object within the user interface hierarchy to be trans-
formed by scaling (enlarging or shrinking], rotation, and
translation. This lets the user draw a symbol that can be
reused by providing only the data that differentiates its
position and size from another instance of the symbol. The
API concatenates modeling transformations so that an ob-
ject is affected by the transformations on its ancestors. This
allows an entire subhierarchy of objects to be transformed
by one operation on a common ancestor instead of requiring
transformations on every object in the subhierarchy. These
transformations are used when an object is being drawn.
The modeling transformation values are converted to WCs
by multiplying the transformation on an object to its WC
attributes. A current transformation matrix (CTM) is main-
tained during a drawing pass on the objects. Each object
multiplies its transformation matrix with the CTM contain-
ing the transformations of its ancestors. In the API, the
CTM is initialized to be the VTM. Doing this reduces the
number of matrix multiplications and improves the perfor-
mance of the drawing operation.

Adjustments and Scaling
Besides allowing the application developer to work in a

display resolution independent manner when creating the
windows for an application, the world coordinate system
allows a user to resize the window interactively and the
objects to be redrawn without the intervention of the appli-
cation. Changing the size of the window changes the NDC
definition of the window. This change causes the scaling
factors in the VTM to be recalculated at the next display
pass. The objects are either enlarged or shrunk to fit within
the new window size. When resizing a window, the user
may change its aspect ratio. That is, the physical width-to-
height ratio of the object may be different from the WC
width-to-height ratio. When this happens, objects begin to
look distorted. For instance, a circle begins to look like an
oval. This may be an appropriate action for some applica-
tions, but for others, especially those where the objects on
the display are meant to represent something in the phys-
ical world, the application developer wants the objects to
maintain their width-to-height ratio. In graphics packages,
these two modes of operation are referred to as anisotropic
and isotropic scaling, respectively. The API window object
provides the attribute ZtADJUST which the application can

set to ensure that the aspect ratio is maintained. If this
attribute is set and the window is resized, the WC height
or width mapping to the window is adjusted to maintain
the original aspect ratio. This process results in modifying
the scale factors stored in the VTM. This also results in
more viewable WC space in the window in either the x or
the y direction.

Applying the various coordinate systems to windows
and widgets has worked successfully. Specifying their po-
sition and size in NDC or WC units allows the user to
define them in the same manner as graphic objects. It also
allows the application to be independent of the display
and window size even as the user interactively resizes the
window.

Scaling and moving widgets works the same as for
graphics objects. However, as the widgets scale smaller and
larger, the font that they use does not scale because it is a
bit-mapped font. The widget scales larger and leaves more
space between the edge of the text and the edge of the
widget or it scales smaller and closes in on the text, even-
tually clipping it (see Fig. 11). A few possible solutions to
this problem exist. One solution is for the X Window Sys-
tem to support scalable fonts. This will allow the font to
scale with the widget. Another solution is to switch be-
tween a set of fonts with different sizes as the object grows
and shrinks. Widgets also cannot rotate from a horizontal
base. In the API, when a widget is rotated, its defining
point is rotated, and the widget is redrawn in the new
position with a horizontal base. This allows the widgets
to be rotated as part of a symbol and to move along with
any associated graphic objects. Despite these differences

(continued on page 30)

Types of Files:

Class Header File (e.g., c1rck.h)
Class Definition File (e.g., c1rck.c)
Library Definition File (e.g., graph1c.r)
Run-Time Class Information File (e.g., circIe.ltc)
Glue File (e.g., ciassl1bs.c)

1. Run rtc on Library Definition File

graph1c.r

graphic.c

2. Compile the Class Definition File

circ1e.c
I ==e= citck.h --

circle.rtc

3. Compile C Source File gr8phic.c Generated from rtc Tool
_ _ _ _ _ _ _ ~
gr8phic.h

araahic.c

4. Glue Library Definition Object File

cla8slibs.c -wy
classlibs 0

graph1c.h

Fig. 13. The process of adding a new object to the API object
hierarchy.

1

4
j

WWW. HPARCHiVE.COM I

,

HP IVI is an object-oriented system. It uses a set of facilities
called the HP IVI object-o OOE) to provide
the framework for its implem has two parts: a
messaging interface and a tool for compiling an external descrip-
tion of the class hierarchy into C language code. The C code
defines the dispatch tables u 's interface functions
to perform messaging (obje ion). Presented here
are some basic concepts of design and an over-
view of how the OOE implements some of these concepts.

Object-oriented design and programming are proving to be a
natural and productive paradigm for software development be-
cause they enable developers to represent relationships among
system components and the tasks to be performed on these
components in a more natural manner. The main concepts of
this methodology include objects, messaging, polymorphism,
and inheritance.
Objects. An object is the basic unit in object-oriented methodol-
ogy. tt is a structure that contains local data structures and refer-
ences to local prooedures (caBad methods) @tat operate on the
data (see Fig. 1). The current values of an object's internal data
define the object's Current state. The object's behavior is depen-
dent on its current state. The data inside an object is private and
accessible only through one of the methods associated with the
object. An object acts on Its data when it receives a request
asking one of its methods to perform some operation. This mech-
anism is called messaging.

Objects are created from a template called a class. There can
be many objects of each class. These objects are called in-
stances of the class. Each instance is an independent object
with its own data and state. However, an object instance has the
same data structures, shares the same methods, and behaves
the same way as all other instances of the same class. This
means that objects of the same class will respond to the same
messagedifferences in object behavior depend on the current
state (the values of the object instance's data). For example, all
object instances of an object class that draws rectangles will
respond in the same way to a raquest to draw a rectangle. How-
ever, because of differences in the state of the internal data
structures, the rectangles may bedrawn in different sizes, colors,
and positions.

The OOE tool mentioned above is called the rtc (run-time class
information) tool. The rtc tool compiles a symbolic external rep-
resentation of the class hierarchy into the data necessary for

Fig. 1. An object. The internal data structure is private to the
object and the methods have sde access to the data.

defining classes a
representation of t
to produce static t hich consist of
two pieces: a category table an les. These tables
contain information necessary to
A unique key called the message sed to search the
dispatch tables for a pointer to a furdm that will service a
request. The rtc tool also generates a file containing definitions
of symbolic names for the constants that represent the message
selectors. Coding using the symbolic names for the message
selectors provides independence from the structure of the under-
lying dispatch tabtes and provides more readable code. The rtc
tool and the type of files it compiles and generates are described
in more detail on page 31.
Messaging. Objects communicate with each other through mes-
saging. Sending a message to an object requests that object to
perform some actiorr-usually the manipulation of its internal
data. Messages consist of a minimum of two arguments: the

a catwary name and a

category selector in Ms category table and then looks up the

anism is controlled by a set of central messaging routines. These
routines are contained in the message interface to the OOE.
Every object contributes a dispatch table that the messaging
routines search to determine which object implements a function
for a particular selector. Associated with each selector is a pointer
to a method that is called to implement the response to the
message (see Fig. 2).

This connection of a message selector to the appropriate
method is called binding. Binding can take place at compile time
(early or static binding), or at run time (late or dynamic binding).
The OOE currently implements static binding.

In the W E , the message selector is the key to determining
which function gets called when a message is sent to a particular
object. The message selector is a 32-bit quantity consisting of

Category -_L..

I
message (Objects, selector)

t
R e ~ l i w r

Methd
Tables

€

OCTOBER 1990 HEWLETT-PACKARD JOURNAl*

r msrage (ObbcLb, Display-Time) ,- message (Objrcts, ~ i e p ~ a y - ~ i m)

L. 15:00:25

Fig. 3. Polymorphism allows the same message to be sent to different objects regardless of
their internal data types and methods.

two 16-bit fields. The upper 16 bits of the selector defines the
offset of the category to which that message belongs in the
class's category table. The lower 16 bits defines the offset of the
method function pointer in the method table.

If the value of a particular position in the dispatch table is
NULL, the messaging routines traverse up the class hierarchy
searching for a method function pointer. When a function pointer
is found, it is copied to the position in the dispatch tables where
the upward traversal of the class hierarchy began. This tends to
improve the performance of the messaging system over time
because the amount of upward searching is slowly replaced by
direct function Calls and the NULL values in the dispatch tables
gradually disappear. Also, the implementation of categories im-
proves memory use by eliminating method tables when a class
does not support that category.
Polymorphism. The concept of polymorphism in object-oriented
programming enables different types of objects to share a com-
mon operational interface and to be manipulated by user code
independent of the actual types of objects. This means that the
application program does not have to differentiate the object
type at run time. This differentiation is performed automatically
by the messaging system. For example, a message to a clock
object to display the time would redraw the hands in a particular
position if the clock were drawn as an analog clock, while the
same message would cause the time to be displayed in text
format for a clock drawn as a digital clock (see Fig. 3). The clock
object is polymorphic because the same message can be sent
to different objects. The application does not have to worry about
how the time is drawn. That is determined when the method to
draw the clock interprets the instance data that defines each
clock object's internal state. A goal of object-oriented design is

L- method-1 p m n t c -r=l method-3

Fig. 4. Inheritance allows methods to be reused.

to maximize code generality, flexibility, and reusability by defining
common interfaces that can be supported by many different
kinds of objects.

The mechanism of searching the class hierarchy described
above is how the OOE implements the concept of polymorphism.
Inheritance. Inheritance provides the ability to create incremen-
tal definitions of objects (Le., one kind of object can be defined
incrementally in terms of previously defined objects). The new
definition extends the existing definitions by adding data to the
object representation, by adding new methods, and by extending
the definition of existing methods. Using the update time example
from above, the analog clock object that produces the graphic
representation of the time might only implement the method that
draws the representation of the clock and inherit the more basic
functions (e.g., audible alarms) from the more general digital
clock class. Inheritance allows object definitions to be shared
(rather than copied) and customized by extension (rather than
by modification). A goal of object-oriented design is to organize
object definitions so that common behavior is specified in shared
definitions and object definitions can be extended.

The external representation of the class hierarchy that is pro-
cessed by the OOE class compiler (rtc tool) builds tables of
function pointers. Entries that are not NULL in these tables indicate
that a particular class implements a particular method. NULL
entries indicate that a particular class inherits a particular method.
The class compiler also declares a pointer to the class's parent
in the hierarchy (see Fig. 4). The OOE messaging routines use
this information to traverse upward in the class hierarchy when
searching for a method.

In object-oriented systems, classes may have one parent or
many. Single inheritance allows a class to have only one parent.
This is the model implemented by the OOE. Object-oriented lan-
guages such as Smalltalk and C+ + allow classes to have more
than one parent. This is called multiple inheritance.

Pam Munsch
Project Manager

Industrial Applications Center

Steve Witten
Development Engineer

Industrial Applications Center

I

between the operation of the widgets and the graphic and
window objects, the coordinate system feature of the API

st i l l provides a large productivi ty gain for the application
developer.

30 HEWLEll-PACKARD JOURNAL OCTOBER 19w)

Object-Oriented Architecture
Without using an object-oriented programming language,

the API encompasses features provided by an object-
oriented language through conventional C language fea-
tures. The API’s architecture is divided into three layers:
the API function layer, the API object layer, and the device
dependent layer (see Fig. 12). The API function layer pro-
vides the communication interface between a user applica-
tion and the objects created by the application. It is a thin
layer of code that validates the user’s parameters and sends
messages to the objects to perform the tasks requested. The
functions provided in this layer are described in the article
on page 11. In the API object layer, an object is created and
destroyed and all manipulation of an object’s data occurs.
In the device dependent layer, all the function calls to
underlying subsystems are made to draw an object to the
display.

,

Messaging in the API
The API consists of a number of function calls that pro-

vide the communication path between an application and
the underlying objects manipulated by the application.
Most of the API functions require objects as parameters. It
is through this interface that an object’s specific data and
the functions that manipulate the data are accessed. In
essence, the API hides from the user as much as possible
the details of using objects.

To provide the interface between an application and its
objects, a preprocessor tool called rtc (run time class infor-
mation) is used to define the API object messaging facility
and class interitance hierarchy based on information from
a group of description files. Every API class consists of a
class header file and a class definition file. The class header
file defines the data storage for each instance of an object
of that class. This file identifies the object as a member of
a class or classes and provides the connection to the set of
methods that manipulate that object’s internal data. The
class definition file is a C program module that contains
the methods that are specific to a particular class. The class
header file must be included in the C program module so
that the data structure of this object and the class definition
pointer can be accessed. Once an object’s data structure,
class, and specific functions are defined, it needs to be
positioned within the class hierarchy. The positioning of
the class in the class hierarchy is determined by the nature
of the class and the methods to be inherited. The simpler
a class is, the higher up in the class hierarchy it is
positioned. Conversely, a more complex class is positioned
further down in the class hierarchy. The positioning of a
class within the class hierarchy is defined within the library
definition file. This file defines the methods that are avail-
able for messaging to a class and the methods that can be
inherited by that class.

Adding an API Object
Adding a new class to the API class hierarchy is a four-

step process. This process is illustrated for the circle class
in Fig. 13. First, the library definition file (graphic.r) is used

these output files (circkrtc in Fig. 13) is the run-time class
information file, or .rtc file. A .rtc file is created for every
class defined in the library definition file. It contains the
class definition structure and the method dispatch tables
for that specific class. The .rto file is included at the end
of the class definition file for that class when the class
definition file is compiled (step 2). In the third step the
new library definition files (graphic.h and graphic.c) are com-
piled. Finally, the pointer to the new class must be added
to the file that defines the class hierarchy. This file is called
the glue file (das9libs.c). In step four, clasdibs.c is compiled
with the class header file (graphic.h) to produce the object
file dasslibs.0.) When these object files (circle.0, graphic.0, and
classiibs.0) are linked into an application, the addresses to
the methods supported by the various classes are resolved.

By using object-oriented technologies, the API is able to
create graphic objects. One problem users have with soft-
ware systems such as the X library is that graphic primitives
are not objects. The X library provides many graphic func-
tions that operate on the individual pixels of a graphic
display but the parameters describing the object are not
kept. For example, if a circle is drawn and the application
simply wants to change its color from blue to red, all the
parameters (location, size, line width, etc.) to draw the
circle must be passed to the X library function again. The
API solves this problem by providing graphic objects using
the rtc tool. This allows the user to describe the parameters
of the object once and then make simple modifications
only to the parameters that are changing. The application
is freed from maintaining all of the data necessary to redraw
all of the graphical objects in the window.

Concluslon
The HP M project was successful in blending graphics,

windowing, X toolkit, widget, and object-oriented tech-
nologies in the internal design of the API. Because most
of these technologies were developed separately, it was not
always clear how to integrate them. The API solved most
of the problems encountered and as a result of this effort
a high-level user interface toolkit was created that reduces
the complexity of building a sophisticated graphical user
interface for an application.

Acknowledgments
Besides the three authors, the other members of the API

development team were Scott Anderson, Hai-Wen Bienz,
Mark Thompson, and Mydung Tran.

References
1. F. E. Hall and J. B. Byers, “ X A Window System Standard for
Distributed Computing Environments,” Hewlett-Packard Journal,
October 1988, Vol. 39, no. 5, pp. 46-50.
2. K. H. Bronstein, D. J. Sweetser, and W. R. Yoder, “System
Design for Compatibility of a High-Performance Graphics Library
and the X Window System,” Hewlett-Packard Journal, December
1989, Vol. 40, no. 6, pp. 6-12.
3. Ibid, p. 7.
4. J. A. Dysart, “The NewWave Object Management Facility,”
Hewlett-Packard Journal, Vol. 40, no. 4, August 1989, pp. 17-23.
5. T. F. Kraemer, “Product Development Using Object-Oriented
Software Technology,” Hewlett-Packard Journal, Vol. 40, no. 4,
August 1989, pp. 87-100.

as the input to the rtc tool. The rtc tool takes the library
definition file and produces several files as output. One of

OCTOBER 1990 HEWLETT-PACKARD JOURNAL 31

HP IVIBuild: Interactive User Interface
Builder for HP IVI
Using the facilities provided by HP IVl’s application program
interface, HP IVlBuild allows developers to create and
experiment with different types of application user
interfaces, save them in files, and bind them to the
functionality of the application at run time.

by Steven P. Witten and Hai-Wen L. Bienz

HE EDITOMUILDER COMPONENT of the HP In-
teractive Visual Interface product is HP IVIBuild. As T its name implies, HP IVIBuild is a tool that is used

to build user interfaces interactively. The windows and
objects that make up the user interface can be saved in a
file and reused later by other applications using the API
functions (see Fig. 1). HP IVIBuild is itself an HP IVI appli-
cation program because it uses the API functions described
on page 11 as a platform. Fig. 2 shows the architecture of
HPIVIBuild.

Early in the design of HP IVIBuild we realized that al-
though the HPIVI application program interface (API) func-
tions are several orders of magnitude easier to use than

A R E

Files Containing
Saved User

Applications
Restoring User
Interfaces and

Adding Functionality

Fig. 1. HP IVlBuild allows users to create and experiment
with different user interfaces and save them in files to be
reused by other API applications. (API = application program
interface of HP IVI.)

32 HMILETr-PACKARO JOURNAL OCTOBER 1990

Xlib, the X toolkit, and widgets, they are still very complex
to many users. Therefore, an interactive user interface de-
sign tool, HP MBuild, was developed to complement the
API functions.

HP IVIBuild helps promote software development pro-
ductivity in areas such as rapid prototyping and the design
and modification of user interfaces. For rapid prototyping,
HP IVIBuild allows developers to create complex prototype
user interfaces. The user can interactively place and size
all of the primitive graphics and widget objects in a win-
dow. Once the objects are placed and sized, many of their
physical attributes such as colors, shadows, strings, and
fonts can be changed easily within HP MBuild. Even some-
one who does not have any software background, such as
a human factors expert, can use HP MBuild to design a

Display
output

Processing States

State Machine

0 HP IVI Object-Oriented
Environment

Graphics
HP IVI Widgets

Driver Xt lntrinsics
Y ... :_A n___.__

i User
Input

I
I

Y

a

Fig. 2. The components that make up the HP IVlBuild ar-
chitecture.

complex user interface. This means that an application's
user interface can be prototyped and evaluated separately
from the operations performed in the application.

Besides restoring the user interfaces created with HP
MBuild, the API functions in the application also make
the objects in the interface react to user input. Callback
functions, which are invoked in response to user input to
the application, can be attached to those objects that should
respond to user input. If the application requires changes
to the user interface in response to application or customer
needs, the previously saved user interface can be modified
with HP IVIBuild. If the changes involve adding new ob-
jects, callbacks can be added to the new objects using the
API functions in the application program. However, if
changes are made to existing objects, no changes need to
be made to the application program.

Fig. 3 shows the interface areas provided by HP IVIBuild.
The functions of these areas are:

Utility Box. This area displays current object information
and the menus for object manipulation.

w Tool Box. This is the area in which the user selects the
objects to be manipulated.
Workspace. This area displays the windows being
created.

ObJect-Oriented Deslgn In HP IVlBuIld
HP IVIBuild uses the API functions and the facilities

provided by the HP IVI object-oriented environment to
build its own object-oriented system. The object-oriented

concepts of objects, polymorphism, and inheritance are
incorporated into the design of HP IVIBuild.
Objects. In HP MBuild objects are very simple data struc-
tures called states. A state is the context of user input (Le.,
the operation in progress) at any particular point in time.
All states are static (bound at compile time) and have the
same structure. Only one field in the structure, called a
message selector, is filled in at run time. This field is used
to bind HP IVIBuild's user interface presentation to its
functionality. User interface binding and functionality are
discussed later in this article. The following is the C lan-
guage structure of a typical state object.

CLASSVARS(C1assVars) P This macro is included for *I
/" compatibility with the HP IVI ' I
I' object-oriented environment and *I

*I P is not used by HP IVIBuild.

extern struct ClassDef DzRect; P Structure containing pointers to *I
P this state's method dispatch *I
P tables. Thisstructure is *I
I' created bythe API rtc tool. *I

static INT32 groupmembership [] { P Array containing a state's ' I
=NULL P group membership information. '1

1; I* The purpose of this array is to *I
P help limit state transitions *I
I* at certain times. Currently *I
I" this feature is not used in *I
P HP IVIBuild. *I

El 1111111

t
Utility Box - Tool Box

Workspace Area

Fig. 3.. Interface areas of UP
IVIBuild.

OCTOBER 1990 HEWEIT-PACKARO JOURNAL 39

static char objectname[] = "s-rect"; P this state's name "I

1. All state objects have the following structure. *I

static struct DzRect{
struct ClassDef 'class; 1' Pointer to the dispatch tables. *I
char 'statename; P Pointer to the state's name. *I
INT32 clsindex; I* A unique id assigned to this state. *I
INT8 autoterm; I' This state's autotermination *I

1' flag (if TRUE the state machine *I
I* terminates the state and if FALSE *I
I* an action by the user must */
I* terminate the state). *I
P Message sent to the current state */ INT32 selector;
1' to cause a transition to this
r state.
P Pointer to this state's group
P membership information.

INT32 'group;
, -

r' * L

7

I* Data values assigned to the fields defined above

-state-rect = {
&DzRect,
objectname,
27,
FALSE,
-sJect,

groupmembership

1;

I* Initialization.
P Pointer to dispatch tables.
I* Pointer to name.
P State's id number.
P State is NOT autoterminating.
I* Message selector that causes
I" transition to this state.
P Pointer to group membership
I* information.

idstate sJect = (idState)&state-rect; /"A pointer to this state
Pthatisusedby HPlVlBuild "1
P to access and manipulate *I
/'data in this structure. ' I

Inheritance. In HP MBuild, as in most object-oriented
systems, state objects are arranged in a hierarchy. At the
root of the hierarchy is a special state known as the root
state (see Fig. 4). The root state in HP IVIBuild manages
interstate transitions. Since the root state is at the top of
the object hierarchy, it implements many more methods
than the other states in HP IVIBuild. Using inheritance,
the lower-level objects inherit all the methods from the
root state. This inheritance mechanism is used to imde-

ment state transitions in HP IVIBuild.
Polymorphism. HP IVIBuild's central input handling facil-
ity, which is called the state machine, depends on the
concept of polymorphism. All states in HP IVIBuild have
the same operational interface (i.e., the state object is
polymorphic). Therefore to the state machine, all states
look the same and are able to respond to the same set of
messages. The state machine does not know or care which
state is currently active. It only knows that the current state
either implements or inherits all the methods that are the
targets of messages being sent to it.

The box on page 29 provides a brief review of object-
oriented concepts and the HP M object-oriented environ-
ment.

Input Handling
Messages sent by the state machine to a particular state

can result in either an interstate transition or an intrastate
transition depending on the message that is sent. Interstate
transitions are transitions among the various state objects
of HP IVIBuild, and intrastate transitions are transitions
within a particular state object.

A new state becomes current by an interstate transition.
Interstate transitions are handled by the state machine. All
input in HP IVIBuild goes through the state machine. The
state machine is an API callback function that is attached
to all the components of HP IVIBuild's user interface and
all of the workspace windows created by the user. The
objects in the HP IVIBuild user interface are called user-
interface objects, and the objects created by the user during
an HP IVIBuild session are called user-workspace objects.
Using this mechanism, HP MBuild is able to control the
context of the user's input. This is an important require-
ment of any interactive design tool.

The state machine performs the following functions:
It changes the active workspace windows when the user
requests it.

H It interprets the meanings (context) of the mouse buttons
when they are pressed in the active workspace window
according to a user-definable mouse button map.

H It sends messages to the current state.
It manages the state stack. The state stack is an array of
message selectors for the state objects.
It makes new states current and terminates others that
have completed.

\
\

/ h
/ ..

/
\ /

/ '"X\ /

Fig. 4. A portion of the HP IVlBuild object hierarchy

br

The Current State -9
There is always a state that is active. This state is called

Current -
State

Root State 4 . .

Fig. 5. The state stack.

34 HEWLETT-PACKARD JOURNAL OCTOBER 1990

\N\N\N HPARCHIVF COM

I the current state. The current state is always the state to

the current state to provide a target method for any mes-
which the state machine sends any messages. It is up to

sages that the state machine may send it. The target method
is located either by implementation or by inheritance. If
no operation is in progress (i.e., only one state onthe stack),
the current state is the root state. If an operation is in
progress, the current state is the state that implements that
operation (e.g., creation of an object such as a polyline or
widget).

No state knows which state was current before it became
current and no state knows which state will become current
after it ceases being current. These rules were strictly en-
forced to ensure the black-box nature of each state’s
methods during design and testing.

Once current, a state controls the context of the user’s
input according to a state transition mechanism of its own.
These state transition mechanisms are called intrastate
transitions and are controlled entirely by the state itself
using a local variable called a substate. For example, mov-
ing forward or backward in a sequence of actions that are
part of one particular operation, such as creating a polyline,
is controlled entirely by the state itself. The substate mech-
anism is described later in this article.

I

I

f

State Stack Management
During the execution of HP MBuild the states that are

activated by the user are organized in a LIFO (last-in, first-
out) stack (see Fig. 5). The state machine provides a mech-
anism to suspend operations in progress to do another op-
eration and then resume the suspended operation when
the new operation finishes. The state at the top of the stack
represents the current context of the user’s input and is
the current state. Only the current state can receive any
messages. The maximum depth of the state stack is defined
to be ten states. This is an adequate depth because there
are other mechanisms in HP MBuild that prevent the state
stack from growing to a depth of more than three or four
states. The root state enters the state stack first and remains
there during the entire execution of HP IVIBuild. Therefore,
the root state is always in the stack regardless of the depth
of the stack.

At each interstate transition, the state machine checks
the autotermination flags of each state in the state stack. If
the autotermination flag is TRUE, that state is terminated
immediately by the state machine and removed from the
state stack. The state stack is then compacted and the state
ending up at the top of the stack is started. If the autotermi-
nation flag is FALSE, only an action by the user can terminate
the state.

ZtUSERDATA attribute of the object that received the event,
which has a pointer to the message selector that, when sent
to the current state, wiIl cause an interstate transition to a
new state. The state machine sends the message to the
current state. This process works the same way for HP
MBuild user-interface objects and user-workspace objects,
except that user-workspace objects always send a hit mes-
sage to the current state. A window created by the user is
the only user-workspace object that functions like a user-in-
terface object. A hit message results when a user presses a
mouse button in a workspace window.

If the current state can handle the message, the method
that is called will either return a pointer to the current
state or a NULL. This pointer is returned to the state machine
as part of the normal message sending mechanism of the
HP M object-oriented environment. States return pointers
to themselves when they want to remain current. This will
cause an intrastate transition. States return NULL when they
receive an exit message and want to cease being the current
state. This will cause an interstate transition. Fig. 6 shows
a portion of the state transition process.

Since the root state is the parent of all other states, the
interstate transition process depends heavily on inheri-
tance. Each state inherits all the methods from the root
state. When a state receives a message for which it does
not have a method, the HP M object-oriented environment
will search the current state’s lineage (object hierarchy)
until it finds the target method for the message. In the case
of an interstate transition, the target method will always
be found in the root state. The target method in the root
state returns a pointer via the object-oriented environ-
ment’s messaging system to the state object that is to be
made the current state. This is the pointer that the state
machine compares to the value of the pointer for the current
state. When it sees that the two pointers are different, it

Button
Re’sr80 -b DzState Machine (..., rnrg_selector)
Event I

Interstate
Transition

State Transition and Inheritance
As mentioned earlier, an interstate transition is the pro

cess of making a new state (a state not currently on the
state stack) the current state. The new state is placed at the
top of the state stack and started by the state machine. The
state transition process begins when an event occurs such
as a button release over an object on the display. The first
thing to happen is that the state machine function is called
as part of the normal API callback processing (see page 23).
The state machine function is passed a pointer to the

I
9 MakeNew 1

State Current

Intrastate
Transition

Fig. 6. The state transition process.

places the new pointer at the top of the state stack (making
the state current) and sends a start message to the new state.
Thus, by inheritance, every state object has the ability to
activate any other state object.

When an intrastate transition occurs, there is no change
to the current state (i.e., the pointers are equal). The current
state handles the incoming message itself.

State Protocol
All states follow a specific protocol that is implemented

in the state machine of HP IVIBuild. Fig. 7 illustrates this
protocol. An interstate transition (Fig. 7a) occurs when the
current state receives an exit message and it returns a NULL
to the state machine indicating that it wants to cease being
the current state. The state machine makes the new state
the current state and sends a start message to the new state.
The new state remains the current state as long as it con-
tinues to return a pointer to itself to the state machine (e.g.,
Currentstate in Fig. 7b). Following this protocol allows a
state to control the meaning of user input within its own
context. Each state implements or inherits five standard
methods that constitute its operational interface: start, hit,
backup, undo, and exit.
Start. As shown in Fig. 7, the start message is the first message
a state receives before any other message is sent to the state
(except exit).
HW. A state gets a hit message when the user presses a mouse
button in the workspace window that is currently active.
HP IVIBuild allows the user to construct and edit as many
windows as desired but only one can be active at a time.
To activate another window, the user only has to press a
mouse button over the window that is to become active.
Depending on their h~ methods, states are classified as
either multiaction or single-action states.

A multiaction state requires the user to select multiple
points in the active window to perform the operation im-

Interstate
Transition

State
Machine c

return (Currentstate) xL3il13
Intrastate
Transition
(Input over b=hP

Workspace)

plemented by the state. An example of a multiaction state
is one that allows the user to create polylines or splines.
When the user presses a mouse button in the active window
and a multiaction state is the current state, the action of
the state is said to go forward. Fig. 8 shows the intrastate
transition diagram for a multiaction state that translates
objects.

A single-action state does not require a hit in the active
window to go forward. Single-action states can only do
one thing. An example of this are selections (i.e., states
that select certain kinds of objects for further operations).
Once the class of objects that are to be selected is known,
the objects are selected and no further input from the user
is required. Any single-action state that receives a hit mes-
sage is terminated and removed from the state stack. The
hit message is sent to the the new current state. Fig. 9
shows the intrastate transition diagram for all single-action
states.
Backup. All multiaction states implement backup. This is
the reverse operation of a hit message because it allows the
user to cause the action of the state to go backward over a
previously sent hit. No single-action states implement back-
UP.
Undo. All states implement undo. Undo allows the user to
back a state up to the point right after it received its first
start. This has the effect of undoing any actions that had
been performed by the state. Undo may also be sent im-
mediately after a previous undo to effect a redo operation.
Exit. A state is sent an exit immediately before its removal
from the state stack. This allows the state to reinitialize

start
-UP

interstate
Transition return (C u m t S t a t e)

4 return (NULL) I

[z; State

-r\ < feu--)

Fig. 7. HP IVlBuild state protocol. (a) An interstate transition.
(b) Intrastate transition.

Fig. 8. Intrastate transition diagram for a multiaction state
that translates objects. These states are substates of the cur-
rent state shown in Fig. 7b.

38 HMILETT-PACKARD JOURNAL OCTOBER 1990

WWW.HPARCHIVE.CBM

h

I
I

itself for its next activation.

The Substate
Once current, a state controls its own actions using a

local variable called the substate. During a sequence of
operations, the messages start, backup, hit, and undo may be
sent repeatedly to the current state. These actions do not
cause interstate transitions. Rather, they cause intrastate
transitions. The current state does not change but the mean-
ing of the next input event may have to be interpreted
differently depending on the sequence of messages the state
has received since it was made current. The value of the
substate is changed to reflect the context of the next hit,
backup, or undo. Note that start is always sent after every
action whether the action causes an intrastate or interstate
transition. This is part of the protocol established for a
state by the state machine.

Uniformity
Great care was taken to ensure that the same actions have

uniform behavior no matter which state is current. The HP
MBuild team developed guidelines for developing states,
and intrastate transition diagrams were developed before
the development of a particular state so that the uniformity
of actions could be assessed by the whole team. The result
is a tool with very modular units of functionality that all
behave in a consistent and intuitive manner.

The HP IVIBuild User Interface

HP IVIBuild’s user interface was designed as a collabora-
tive effort between the HP IVIBuild team members and the
industrial design department at HP Software Engineering
Systems Division (see the article on page 39). The objective
of the collaboration was to design a user interface for HP

start
bsckup

return (CurrentState) Interstate undo
Transition return (NULL)

I I :!!a+

Fig. 9. Intrastate transition diagram for single-action states.
These states are substates of the current state shown in Fig.
7b.

IVIBuild that was both attractive and intuitive to the user.
Besides the appearance, HP MBuild is structured to han-

dle native language support and user customization. One
other interesting feature is that the HP IVIBuild user inter-
face presentation is not bound to the functionality until
run time.

Native Language Support and Customization
HP IVIBuild’s user interface conforms to HP standards

regarding support for native languages and cultures. All
text that is presented to the user such as labels, prompts,
and error messages is contained in message catalogs and
is retrieved by HP IVIBuild at run time. To localize HP
MBuild, the user only needs to change the contents of the
catalogs. In general, these tasks are performed by HP per-
sonnel in the country whose native language is the target
language. This way, text can be presented with as much
context sensitivity as possible. Idiomatic nuances of text
presentation are not lost (as they sometimes are with
straight translations).

Another feature of HP IVIBuild’s user interface presenta-
tion is that colors, tiles, few, mouse button bindings and
icons can be customized for individual users by modifying
the X Window System configuration file .Xdefaults. This
mechanism allows individual users to customize the pres-
entation of IVIBuild’s user interface to suit their own needs
(e.g., left-handedness, black-and-white display).

Presentation and Functionality Binding
The presentation of the components that make up the

user interface of HP IVIBuild (i.e., the buttons, menus, win-
dows, etc.) and the functionality (the states) associated with
these components are bound together at run time. The func-
tionality of HP IVIBuild, that is, the result of pressing a
certain sequence of buttons, is not dependent on the user
interface presentation. For example, in one user interface
presentation, drawing a rectangle might be accomplished
by selecting buttons labeled PI and P2 for the lower-left
and upper-right corners of a rectangle and typing the coor-
dinates into a pop-up dialog box. In another user interface,

Tool Box

Attribute

rr. A 0

0

IVI Bulld Utility Box Message
Selector

Callback

3 h
9 I ‘

C‘ List
0

irameter
1

I Q ,
Ztlnput
Calls ...

Fig. 10. Binding HP IVlBuild user interface presentation to
functionality at run time.

--
OCTOBER 1990 HEWLETT-PACKARD JOURNAL 37

,‘ . .,,+!.!$w

drawing a rectangle might be a three-button sequence in
which the user presses the Rectangle button and then clicks
on the desired coordinates with the mouse. In either inter-
face, the state operations result in a rectangle.

The binding of functionality to user interface presenta-
tion is done when HP IVIBuild starts up. At this time the
objects [windows, menus, buttons, etc.) that make up the
HP IVIBuild user interface are restored from a file. Pointers
to objects (Ztlds) that activate states or send messages to the
state machine are looked up using the name of the object
that was assigned when the object was created with the
API functions. This lookup is accomplished using an API
function. When the Ztld for an object is returned, the mes-
sage selector for the state to be activated is retrieved. At
this point a callback object (ZtCALLBACKOBJ), which will
call the state machine whenever an event occurs on the
user interface object, is created for the user interface object.
Also, the message selector from the state object is made an
attribute (ZtUSER-DATA) of the user interface object. Once
the callback object is attached to the user interface object,
the binding is complete (see Fig. 10). When a specified
event occurs on a particular user interface object, the in-
terstate transitions described earlier occur. This scheme
makes the state machine a callback for every IVIBuild user
interface object and for every workspace window the user
creates.

Separating the user interface presentation from function-
ality means that the presentation can be developed inde-
pendent of functionality and the same functionality can be
easily given a new presentation. New functionality can be
added and tested in a straightforward way without worry-
ing about its presentation.

Acknowledgments
There were many challenges presented and many re-

wards gained in the development of HP IVIBuild. So many
people added their inputs to HP IVIBuild that it is hard to
mention them all. We would, however, like to thank Ron
MacDonald [now at HP’s Graphics Technology Division in
Fort Collins, Colorado) who endured a year away from his
home to work on HP IVIBuild. Every time a user draws a
polyline or spline or makes a widget with HP IVIBuild,
they will be using Ron’s work. Thanks also go to Shiz
Kobara of HP’s Software Engineering Systems Division
(SESD) who had the original idea that the user interface
was a place where industrial designers could make a con-
tribution. Thanks to Steve Anderson and Jennifer Chaffee
of SESD who followed through on Shiz’s idea while Shiz
was busy working on HP OSFMotif. Our users will see
their work every time HP IVIBuild displays its user inter-
face. Thanks to everyone who gave us their comments and
encouragement.

0

I

Conclusion
HP IVIBuild was conceived with two objectives in mind:

to be a powerful, easy-to-use tool to complement the HP
IVI application program interface functions and to be the
first API application and as such to provide feedback to
the API development team. Both of these objectives have
been accomplished. We believe that HP IVIBuild’s func-
tionality and designed-in extensibility based on an object-
oriented architecture are among the first for tools of this
type.

38 HEWLETT-PACURD JOURNAL OCTOBER 1990

t . WWW. HPARCHlYE.COM

" I 5 , ' Creating an Effective User Interface

A

for HP IVlBuild
The HP IVlBuild user interface was a collaborative effort
between the software engineers developing the code for
the product and a group of industrial designers who
understand the requirements of an effective graphical user
interface.

by Steven R. Anderson and Jennifer Chaff-

-.. I

MONG THE PRESENT and potential customers for
HP's computer systems are companies that are in-
creasingly integrating computers into their manu-

facturing processes. However, the computer focus of these
companies is more on solutions than on hardware and
software development. To help provide these solutions on
HP computer systems there are efforts within the company
to encourage or enable independent software vendors
(ISVs) to develop these software solutions. HP IVI from
HP's Industrial Applications Center (IAC) is one such effort.
Its purpose is to help ISVs build graphical user interfaces
for their applications used in industrial applications.

Why the need for a graphical user interface? Many of the
operators and users of computer-based systems in an indus-
trial environment are not computer literate. They typically
perform tasks like controlling an automated spray paint
line, and the interfaces to the tools they use are typically
knobs, dials, buttons and other physical and visual objects.
A command line interface is a totally foreign approach for
these people, and many of them refuse to deal with it.
Whatever can be done to enable the interfaces to come
closer to the users' current way of doing things is seen as
having value. A graphical user interface is seen as having
the greatest potential in making the interface familiar. Re-
cent developments in user interface technologies' are very
suitable for graphical user interfaces in industrial automa-
tion applications.

Background
HP IVIBuild is a tool that enables users to develop graphi-

cal user interfaces interactively. Therefore, it seemed
appropriate that it should have a graphical user interface.
For this capability the HP IVIBuild developers decided to
use the graphical user interface components that were
under development at HP's Interface Technology Operation
(ITO) in Corvallis, Oregon. These components are com-
monly called widgets2 They include things like menus,
scrollbars, pushbuttons, text-edit boxes, and radio buttons.
They are the raw materials from which a graphical user
interface is assembled. The HP IVIBuild team had no idea
that using widgets would lead to collaborating with visual
design professionals.

Neither did we, the visual design professionals, know
about the HP M team. We are the usability design and

engineering group of HP's Software Engineering Systems
Division (SESD). We are former industrial designers who
switched our design focus from designing hardware enclo-
sures to the area of user interfaces, plus one graphic design-
er. At the time our division was developing what would
become the HP SoftBench envir~nrnent,~ and we were also
looking to IT0 for the necessary widgets. Rather than pas-
sively waiting to see what they might provide, we were
encouraged by our management to lend our professional
expertise to the widget development, and IT0 was open-
minded enough to listen to some of our ideas.

We didn't begin with any proven graphic user interface
expertise. We had done some design analyses of the leading
graphical user interfaces. Also, coming from a background
in which our experience and training forces us to process
information visually gave us some ideas about how an ef-
fective graphical interface should look. And because our
experience with software and computers was limited to
being application users, we had some first-hand knowledge
about the user interface requirements for users who are not
software literate.

&Isle Principkr
Three principles have established the foundation for

graphical user interfaces in recent years, notably in office-
oriented applications. The first principle is that it is easier
for most people to have their alternatives presented to them
in a manner that allows them to make choices rather than
having to remember all of the alternatives. Choosing a com-
mand from a menu is often easier than remembering it.
The second fundamental principle is that making these
choices by some means of direct manipulation is often
preferred over typing in text commands. Pushing a button
or dragging a file icon into a folder icon or a trash can are
two examples of direct manipulation. Finally, the third
principle is to use metaphors from the real world. For exam-
ple, we know what to do with a pushbutton.

In our analyses of the many graphical interfaces existing
today, one of the impressions we formed was how confus-
ing they could be because of the flat and bland graphics.
This is especially true in multiwindow environments in
which there is a high degree of overlapping and the simi-
larity of the graphic images seems to blend all the images
together into one confusing mass. We thought that creating

OCTOBER 1990 HEWEIT-PACKARD JOURNAL

greater visual distinctiveness between objects would signif-
icantly enhance a user's ability to keep things sorted out.

3D Appearance of Widgets
Our first attempts to express widgets graphically were

with the traditional black lines on a white background. To
get away from the sameness mentioned above, some of the
widgets were drawn to look three-dimensional and to look
and act like pushbuttons. It soon became apparent that the
displays of the future would not be constrained to simple
black and white, and that larger areas of solid color could
be used. This was a significant breakthrough.

With the capability to use color, we added three colors
to the black and white. By using light, middle, and dark
versions of a color, we could make a button look very
three-dimensional. This was achieved by making the top
and left edges light, the flat surfaces the middle value, and
the bottom and right edges dark. This technique makes it
appear as though a light is shining on the button from the
upper left. Another nice by-product of this technique is
that by momentarily switching the light and dark colors
when a button is selected, it actually appears to be pushed
in. It was so effective that people got a little silly pushing
buttons the first time they saw a working prototype.

People intuitively grasp the notion that if something ap-
pears to protrude, it can be pushed or selected to generate
some action. Widgets that accept or display inputs appear
to be recessed. Noninteractive things like labels are flat.

Scrollbars are hybrids, with a recessed groove containing
raised controls. Menu bars look like large buttons with
several labels on them. When the mouse drags over a menu
item, it appears to raise, transforming itself into a button.
When a menu item is selected by releasing the mouse but-
ton, the feedback mechanism is the same shadow reversal
the pushbutton uses to appear recessed. Fig. 1 shows the
transition from a total 2D appearance to a full 3D appear-
ance.

Most people found this 3D appearance appealing. It be-
came a key factor in the subsequent adoption of the HP
widgets by the Open Software Foundation (OSF) for their
OSF/Motif standard user interface.*

A New Principle
The 3D appearance ends up creating a new fundamental

graphical user interface principle: the visual separation
and distinction of what we call user space and interface
space. User space is where the user's inputs go, or where
the user performs work. Examples are the space provided
in a word processor for entering text, or the space provided
in a paint program for creating images. It also includes
those areas where the user is asked to input data like the
name of a file.

The rest of the screen is the interface space, or the visual
manifestations of the applications and/or the operating sys-
tem. Included in this category are items like window
frames, dialog boxes, tool panels, menus, and the metaphor- . 1

I

Conuert
Converted 00s file will be displayed in R I ... J10.

Convert-

otal 2D

.ile Name:

Convert
Converted 00s file will be displayed in R 1 ... J10.

Convert File Name:
Frorn I enter text here

TO D O T I

40 HEWLETT-PACKARD JOURNAL OCTOBER 1990

r t e x t here

r :

I

Flg. 1. Transition from total2Dap-
pearance to a fulI3D appearance.

t WWW. H PARCHIVE.COM

ical desktop. The interface space, whether controlled by
the application or the operating system, is where all of the
3D effect is found.

In office-oriented applications, which have been driving
the graphical user interface movement to date, the 2D user
space is usually dominant in terms of screen m a . The
main focus of these applications is
tool that allows the user to create d
ments such as mail messages, memo
overhead slides, and newsletters. B
tions, the user space is perceived to be the WYSIWYG
equivalent of some sort of paper document, whether a small
notepad or a large drawing. It is predominantly two-dimen-
sional, which is appropriate because the resulting docu-
ments are also two-dimensional.

There is an emergence of graphical user interfaces in
which the interface space dominates because the main
function of the applications is not document creation but
some form of process setup and control. Examples include
things like configuring and running a set of test instru-
ments, or monitoring and controlling a complex tempera-
ture control system or an assembly line. HP MBuild is
geared to create interfaces of this latter type. The 3D widgets
(or OSFMotif widgets) are particularly well-suited to this
type of interface because the physical reality they convey
is much closer to the mental model most people have of
activities that are control-panel oriented. Fig. 2 shows one
window for an office-oriented application and another for
an instrument control panel.

HP iVlBufld before Redesign
In the early stages of development, the HP M team used

the initial version of the widget code from HP’s Information
Technology Operation. The early results of their using this
code produced the 3D appearance shown in Fig 3. Unfor-
tunately the 3D effect was largely lost and the user interface
was hard to understand. This early result was not a surprise
because the HP MBuild team had not yet had enough
experience with widgets and consequently had little notion
of how to achieve and use the 3D effect. They were also
unfamiliar with many of the standard techniques and prac-
tices for creating graphical user interfaces.

Our group had concurrently been using the 3D widgets
with our own HP SoftBench tools. That successful experi-
ence plus the acceptance of HP widgets for OSFMotif gave
us a certain amount of credibility. As a result we soon
found ourselves in contact with the HP IVIBuild team. Like
our experiences with the IT0 team in the development of
widgets, the HP MBuild people were very open-minded
in letting us get involved with their product.

HP MBuild was different for us in that it not only uses
conventional widgets to create a graphical user interface,
but it can also create graphic objects that behave like
widgets. What this means is that buttons and scrollbars
can be supplemented with graphic representations of ob-
jects that can change to reflect current status. For example,
a graphic image of a storage tank can change to show the
current level of the liquid it contains, or an assembly line
schematic can be changed to reflect the status of each work
cell. The output of HP IVIBuild can range from simple
windows with menu bars and dialog boxes to very complex

K
r

?

control-panel-like layouts with animated graphics and
numerous controls. These capabilities were not obvious in
the original interface shown in Fig. 3.

The Structure of HP IViBuild
The HP MBuild user interface is divided into three parts:

a utility box, a tool box, and a workspace.
The Utility Box. This area holds the menu bar, a prompt
window, several status indicators, and some commonly
used commands in the form of pushbuttons.
The Tool Box. This area is like a palette of various graphic
or widget creation tools. It has three modes: graphics,
widgets, and models. The graphics mode functions like a
typical paint program, displaying numerous drawing tool
buttons as well as mechanisms for displaying and selecting
items such as colors, patterns, and line weights. The widget
mode is used for creating and specifying the widgets. The
models mode is used to get access to models, which are
templates or libraries of previously created work. Fig. 4
shows the utility box and tool boxes at an early point in
the design stage of HP IVIBuild.
The Workspace. This is the area in which the user does
the work of building a user interface. In this area graphic
or widget objects are put together on a kind of three-dimen-
sional sheet of paper. After assembly, they are stored away
for use as finished products or as models for reuse or mod-
ification. For example, a simple dialog box might be used
as a template for other dialog boxes, eliminating the need
to start each one from scratch.

Collaboration
The early efforts by the industrial designers focused on

sorting out the functionality found in each of the HP
IVIBuild areas and then finding reasonable ways of present-
ing each area. The utility box and the tool box visual layouts
received the most attention. One of the first steps was de-
termining the menu structure in the utility box. Certain
conventions and many examples exist in industry showing
how applications organize and perform activities like edit-
ing and filing-for example, the locations of commands
like cut, copy, paste, and quit in a word-processing package.
And certain conventions exist in terms of dialog box layout,
like where the OK, cancel, and help buttons should go. We
followed accepted general practices wherever possible, and
tried to develop acceptable solutions where no previous
models existed.

The tool box with its various modes was probably the
most complex job. The final layout chosen for the tool box
owes many of its approaches to showing status and offering
choices or functions to existing de facto standards for paint
programs. There were instances where we were forced by
technical limitations to deviate from these standards. For
example, a simple draw tool like the one used to draw a
rectangle typically requires a decision about whether the
rectangle is to be filled in or left as an outline. A typical
solution is to have one button with a rectangle on it, with
the left half hollow and the right half filled (what looks
like one button is in fact two buttons). In our case the
widgets wouldn’t allow that approach, so we ended up
with a separate button to turn the fill function on or off.
Fig. 5 shows the design recommendation for the utility and

OCTOBER 1990 HEWLElT-PACKARD JOURNAL 41

Fig. 2. One window with a typical
20 office-oriented application and
the other window showing a 30
instrument control panel.

tool boxes at a later stage in the development.
Colors were another area where the designers had some-

thing to contribute. We had some color schemes in hand
from our earlier work on widgets as well as from our work
with HP's SoftBench product. This greatly simplified the
tricky decisions required to convey the 3D quality of
widgets. We provided the color names and RGB values that
had to be assigned to each widget component to make the
3D effect work and provide a pleasant overall interface.

Fonts were also important. Graphical user interfaces in

dependent on good fonts to be successful. While the popu-
lar notion of a graphical interface centers on icons, most

portionally spaced fonts make words work better. The HP
MBuild team decided to use some display fonts that had
been created by HP expressly for 3D widgets. These fonts
provided both behavioral benefits (text properly centered

general, and the 3D widgets in particular, are very much

of the work is still done with words, and good pro-

Y

A

I

I

Fig. 3. A very early version of
HP IVlBuild when the design team 1 first began to use widgets.

42 HEWLETT-PACKARD JOURNAL OCTOBER 1990

WWW. H PARCHIVE.COM

t

Fig. 4. The visual designers' first
proposal for the HP IVlBuild user
interface.

in widgets, text baselines lined up, etc.) and a consistent,
high-quality look.

The designers also created all of the bit maps and icons
associated with the tool boxes and other aspects of the
product. One challenge with many of the tool box buttons,
especially for those in the widgets mode, was to express
the 3D nature on a small scale and with only two colors.
The illusion of using three colors was achieved by using
a light and a dark color and then introducing a dithered
pattern that the eye blends together to form a third color
(see Fig. 6).

The final area of collaboration was to do something visual
and graphical to help explain and sell HP IVIBuild. Some
sample screens were created that express how HP IVIBuild
can actually be used. With just a little prompting on how

to use the 3D effect, a designer used HP IVIBuild to create
two sample screens for each of seven potential application
areas. These compelling images, achieved through the use
of the actual tool, have done more to explain HP MBuild
and its capabilities than a volume of marketing brochures.
One of these sample screens is shown in Fig. 2 on page 8.

Conclusion
We learned a few things as a result of this collaborative

exercise. One is that experts often have problems com-
municating their concepts and ideas to nonexperts. In this
case we had two groups of experts. We found that it was
important to have a main conduit or interpreter between
the user interface designer and the rest of the software
team. Without someone to answer all of the questions the

Fig. 5. A later version of the user
interface after incorporating some
of the implementation limitations.

OCTOBER 1990 HEWLETT-PACKARO JOURNAL 43

WWW.HPARCHIVE.COM

’I
c

user interface designer asks, and interpret the various
dialogs with the team members, the communication pro-
cess really breaks down. One designer interfacing with a
half-dozen individual team members means a half-dozen
different interfacing styles.

Another lesson we learned is how important it can be
to have an early vision of what you are trying to do. Tools
exist that enable designers to create this vision and user
scenarios quite quickly. The power and usefulness of these
visuals should not be underestimated. They are powerful
catalysts for people’s thinking and communication. Once
these are analyzed, discussed, and modified, the product
is better understood by all concerned. Only at this point
should the interface coding begin. The mistake should not
be made of bringing the visual design help in at the very
end to fix up the icons. Chances are the flaws go far beyond
cosmetic graphics, and at this point the investment has
been so great that significant changes are nearly impossible.

Acknowledgments
Acknowledgments are due some of the key people who

are responsible for this successful collaboration. First, to
Steve Joseph and Chuck House of SESD, for letting us work

Fig.
with

6. Achieving the
only two colors,

30 effect

outside of our own division. Both of them have been amaz-
ingly farsighted in encouraging us to work wherever we
can use our expertise to help HP product development. At
HP’s Industrial Applications Center (IAC) where HP IVI
was developed, thanks go to section manager Chuck Robin-
son, project manager Vicki Mosely, and team members
Steve Witten, Pam Munsch, Scott Anderson, and Ron Mac-
donald for their patience and openess. And within IAC
mrketing, special thanks to Dushyant Sukhija and Andy
Lerner for their enthusiastic adoption of visua1 selling tech-
niques. Finally, a special acknowledgment to the other
members of the industrial design team, Barry Mathis and
Shiz Kobara.

References
1. A.O. Deininger and C.V. Fernandez, “Making Computer Be-
havior Consistent: The HP OSFMotif Graphical User Interface,”
Hewlett-Packard Journal, Vol. 41, no. 3, June 1990, pp. 6-12.
2. D.L. McMinds and B.J. Ellsworth, “Programming with HP OSF/
Motif Widgets,” Ibid, pp. 26-35.
3. M.R. Cagan, “The HP Softbench Environment: An Architecture
for a New Generation of Software Tools,” Ibid, pp. 36-47.
4. “OSFMotif,” Ibid, p. 8.

44 HEWLETT-PACKARD JOURNAL OCTOBER 1990

I WWW.HPARCHIVE.COM

I

Authors
October 1990

General Motors Corp , and the HP Graphics Inter-
face System Roger earned a EA degree in micro-
biology in 1976, an MSdegree in microbiology in
1978, and an MS degree in computer science in
1981, all at the University of Hawaii Born in
Honolulu, he lives in San Jose, California, where he
enjoys volleyball and ballroom dancing

Mark E. Thompson
Software engineer Mark
Thompsonjoined HPs
Data Systems Division in
1980, where he worked on
disk diagnostics and util-
ities, I/O drivers for HP
loo0 computers, and a
quality decision manage-
ment program For the HP
IVI project, he was respon-

sible for graphic objects, the error handler, and the
quality function deployment analysis His profes-
sional interests center around 2D and 3D graphics
Mark received his BS degree in computer en-
gineering from Boston University in 1980 Born in
San Francisco, California, he lives in Berkeley. His
interests include automobile restoration, beer mak-
ing, photography, bicycling, gardening, hiking,
camping, and audio electronics.

11 = HP IVI Toolkit

Mydung ?hi Tmn

~~

6 = HP IVI -

Roger Lau, atechnical mar-
ketingengineerat HPs In-
dustrial Applications
Center, provided technical
support for HP IVI. Roger
joined HPs Data Systems
Division in 1981, He has
worked as a development
engineer and a technical
lead in the development of

the HP Advanced Graphics Package, the
HP Device Independent Graphics Library, the
HP Manufacturing Automation Protocol pilot for

Software engineer Mydung
Tran was responsible for
widget development, test-
ing, and native language
support for the HP IVI proj-
ect.Shejoined HPs Indus-
trial Applications Center
in 1988. Mydung has au-
thored or coauthored five
technical articles on distrib-

Jted processing, particle dosimetry, space radia-
ion, and nuclear track detectors Before joining
-IP, shewasaresearch physicistatfhe University
i f Californiaat San Francisco, and agraduateas-

I

sistant at Lawrence Berkeley Laboratories A
memberof the ACM, her professional interests in-
clude computer graphics, parallel processing, and
networking She received her BS degree in physics
in 1975 from the university of San Francisco and
her MS degree in computer science from San Fran-
cisco State University in 1989 Born in Saigon, Viet-
nam,sheismarried, hasasonandadaughter,and
lives in San Francisco

Davld 0. Wathen
User interface design,
graphics, and artificial in-
telligence are the profes-
sional interests of David
Wathen, a sohare en-
gineer who developed en-
hancements for the HP IVI
project. He pined HPs In-

1 dustrial Applications
' Center in 1989, shortlyafter

he received a BS degree in computer science and
applied mathematics from the University of Colo-
radoat Boulder Before joining HP, he wasasoft-
ware designer for the National Center for Atmos-
phenc Research (NCAR), where he built an X I 1
window interface to NCAR graphics David was
also an advanced interface intern at US West,
where he worked on future telephone projects
Born in Littleton, Cdorado, he resides in Sunnyvale,
California. where he enjoys Tae Kwon Do, skiing,
Cwheel driving, backpacking, and traveling

OCTQBSR 1990 HEWW-PACKARD JOyRNAL-&

21 = HP IVI API W g n

r . --. -- .
Pam Munsch, a software
development engineer on
the HP IVI propct at HPs
Industrial Applications
Center, worked as a de-
velopment engineer on an
IC testing project shortly
after she joined HPsSanta
ClaraDivision in 1983. She
is now an R&D project man-

d
enjdy6 playing volleyball.

WunnI.Dt.ubr
As an R&D software en-

ineer at HPs Industrial

mysteries, and photography.

JoseStateUniversityin l9Y7. Heis married, lives
in San Jose, California, and enjoys softball, biking,
and woodworking.

32 =HP IVlBuild

stoven P. wltkn
The principal architect of
the HP IVlBuild portion of
the HP interactiveVisual In-
terface, Steve Witten im-
plemented the state ma-
chine and window and
model handling for the proj-
ect. Flowan R&Dengineer
at HPs Industrial Applica-
tions Center, he joined HPs

base of airborne sulf Wpartiwlate measuremerib
forthe Electrical Power Research Institute's study
of acid rain. Steve is a frequent contributor to

h

taineering. skiing, photography, cooking, and
hiking.

Visual interface desgner
LI Steve Anderson helped de-

sign the user interface for
the HP IVlBuild product He
joined HPs Calculator
Products Divislon in 1976
and was responsible forthe
industrial design package
for the HP 9845 computer/
controller and computer

systemfurnitureproducts, includingthe HP92214
CAD worktable. Mow a lead deeigner on the HP

environment for HP-UX worksta-
rofessional interests include making

computers visually appealing and fun to use He
is named as an inventor on an industrial design

er, coinventorof aproduct
n a color pnnter concept

and coinventor on a patent
idgets and extensions.

in industrial design

alifornia He en-

industrial desian and user "

she lives in Sunnyvale, California. She enjoys paint-
ing, pastels, pottery making, backpacking, travel-
ing, and photography.

49 = Bak Preselected Mixers

Yichd J. L.vemler
Development engineer
Mike Levernierwas respon-
sible for the design of the
HP 11974 filter drive cir-
cuitryandforHP11974test
development He joined
HPs Signal Analysis Divt-
sion in 1984 as a manufac-
turing engineer respon-
sible for the HP8557A and

HP 855944 spectrum analyzers. Following that, he
worked on the microwave and Rf front-end mod-
ules of the HP 7oooO modular spectrum armlyzer
family He also served as an HP regional sales de-
velopment engineer Mike received his BSdegree
in 1983 in electronic engineering from California
PolyiechnicState University, San LuisObispo. and
his MS degree in 1986 in electrical engineering
from Stanford University. Born in Sacramento,
California, he lives in Windsor, California. His hob-
bies include windsurfing, skiing, and racquetball

R o M J. Watreci
Bob Matreci served as R&D
project manager during de-
velopmentof theHP 11974
preselected spectrum
analyzer RF sections. He
joined HPs Signal Analysis
Division in 1978 as a pro-
duction engineer in micro-
wave microelectronics.
After transferring to the

R&D lab, he developed millimeter-wave acces-
sories for spectrum analyzers, including the HP
1 1970 Series waveguide harmonic mixers. Before
joining HP, he developed avionics test equipment
for weather radar Bob has authored two technical
papers and is named an inventor on a patent re-
lated to the preselected RF sections product He
isamemberofthe IEEEandistheprogramchair-
man of the local subsection. Born in Chicago, II-
linois, Bob is married and resides on Riebli Moun-
tain near Santa Rosa, California. His interests in-
clude sailing on San Francisco Bay and near the
Northern California coast, and volunteer testing
of emergency beacons for NASA's Search and
Rescue Satellite (SARSAT).

59 = Hexagonal Ferrltes

b For the past eight years,
Dean Nicholson hasgrown
barium ferrite single crys-
tals, processed them into
spheres, and designed fil-
ters usmg the spheres
Since hejoinedHPs Micro-
wave Technology Division J in 1980, he has also been

tL. -.. and sapphire substrates He re-
ceived his BS degree in 1980 with dual majors in
electrical engineering and materials science en-
gineeringfrom the Universityof Californiaat Berke-
ley Dean is an author or coauthor of four technical
papers on barium ferrite-tuned filters and oscil-
lators He is named an inventor on a patent on the
four-sphere filter configuration that IS part of the HP
11974 spectrum analyzer RF sections product
Born in Orange, California, Dean is married, has
three daughters, and lives in Windsor, California
He enjoys diving, hiking, and camping

r. responsible for charac-

62= HP DIS

Kent L. Garliepp
Specializing in computer-
aided manufacturing, Kent
Garliepp worked on de-
sign, development, and
testing of HP DIS software
for HP 9000 computers as

c

amemberof HPs Industrial
Applications Center in Sun-
nyvale, California After
joining HP in 1959, he pro-

I

vided computer support forthe solid-state labora-
tory of HP Laboratories, and IC manufacturing soft-
ware support at HPs Cupertino lntegrerted Circuits
Operation. More recently, he helped design soft-
ware for truck manufacturing at HPs Advanced
Manufacturing Systems Operation. Born in Palo
Alto, California, Kent is married, has four children,
and lives in Capitola, California. HIS interests in-
clude bicycling, radio-controlled models, and
water-color painting.

Kathlem A. Fufton

g Produckity Division in
184, software engineer

Kathy Fulton helped de-
?lop the equipment con-
31 portion of HPs

Semiconductor Productiv-
Network She also de-

gned and coded the con-
figuration. initialization, and

run-time portions of the HP DIS product, and is now
testing and maintaining HP Sockets software at
HPs Industrial Applications Center Before pining
HP, Kathy was a semiconductor fabrication en-
gineer at Burroughs Corp and asoftware develop-
ment engineer at Trilogy Corp and Amdahl Corp
A member of the IEEE, she received her BA degree
in 1975 in applied physicsand information science
with a specialization in computer science from the
University of Californiaat San Diego. Born in Reno,
Nevada, Kathy is married and lives in Cupertino,
California Her interests include traveling to
unusual locations, reading science fiction, and
quilting

Irene Skupniewlu
For the past four years at
HP, IreneSkupniewicz has
worked as an R&D software
engineer in the develop-
ment of manufacturing ap-

ications. Currently, she is
the Manufacturing Appli-

cations Group working on
the Device Interface Sys-

m and Software Integra-
tion Sockets. twc Wcts that are part of HPs in-
dustrial precision tools for HP 9OOO computers.
lreneearnedaBSdegree(l981)inindustrlalen-
gineering from the Universttyof Wisconsin, and an
MS degree (1987) in electrical engineering from
Carnegie-Mellon University in Pittsburgh Before
pining HP, she worked with UnlmationNesting-
house in Pittsburgh to develop robotic systems.
Born in Racine, Wisconsin, Irene lives in Cuperhno,
California For many years, she has been a "die-
hard" runner and enjoys meeting other HP people
through her membership in the HPRunning Club.

i . u 0 ..*

John U. Frohlich
As a member of the soft-
ware development team at
HPs Industrial Applica-
tions Center, John Frohlich
helped develop the HP DIS
product He joined HP in
1976atthe company's Op-
toelectronics Division, and
helped develop machine
language programsfor MI-

culator-based systems to test LED display devices
He also has worked on several versions of the RTE
operating system for HP 1000 computers and on
ATS/IOOO software John received his BSEE de-
gree in 1963 at the Lucerne State College of Tech-
nology in Switzerland He is a member of the IEEE.
Born in Switzerland, he lives in Cupertino, Califor-
nia, and enjoys mountain hiking, biking, and Iisten-
ing to old jazz recordings

73= R, L, C Measurements

Asad Azh
Now a marketing account
manager for HPs Circuit
Technology Group, Asad
Aziz was previously in R&D,
where he worked on the de-
sign, layout, modeling, and
electrical model verification
of the PCX CPU package.
Before that, he worked on

b packagingR&Dfor HPPA-
R,uvw,,,ruLlr-., ,,,,onTABdesignandelectrical
modeling. Asad joined HPs Colorado Integrated
Circuits Division in 1985, shortly after he graduated
from Brigham Young University with a BSEE degree
in 1984 HereceivedanMBAdegreein1990from
the Universityof Denver Amember of the IEEE, he
has coauthored two technical papers on packag-
ing Born in Lahore, Pakistan, Asad is married and
lives in Fort Collins, Colorado He enjoys squash,
bicycling, and windsurfing

Ravl Kaw
Ravi Kaw developed a
methodology to measure R,
L. and C parameters in
VLSl packages using coax-
ial probes rather than cus-
tom-designed boards
Since joining HP in 1 W2, he
has served as a product
engineer for DRAM and
math chips and as a

semiconductor process engineer. and has worked
on package measurements and modeling re-
search Before pining HP, Ravi was a lecturer at
Kashmir University and an engineer at the Jet Pro-
pulsion Laboratories and Fairchild Semiconductor
Corp He is the author of 14 technical articles on
device physics, device modeling, packages and

OCTOBER 1990 HEWLETT-PACKARD JOURNAL 47

systems, and measurement methods His work has
resulted in two pending patents on packaging
structures and systems and measurement methods
Ravi is a member of the IEEE and the International
Packaging Society He received his BEdegree in
1966 in electronics and telecommunications from
Jabalpur University, his MSEE degree in 1972 in
microwave solid-state devices from Marquette Uni-
versity, and his PhD degree in 1978 in solid-state
electronics, quantum electronics, and microwaves
from the University of California at Los Angeles
Ravi is a member of the board of directors of a local
Hindu communityand cultural center, and aSun-
day school teacher Born in Srinagar, Kashmir,
India, heis married, hastwochildren. and resides
in San Jose, California Heenjoysjogging, garden-
ing, hiking, and reading

David W. Quint
Before Dave Quint joined
HPs Desktop computer Di-
vision in 1979, he helped
design nuclear reactor
control systemsfor Westing-
house-Bents Atomic Power
Laboratories As an HP
R&D design engineer, ne
developed tape automated
bonding (TAB)and pin-grid

array (PGA) packaging for VLSl circuits He is now
an R&D engineer worklng on integrated circuit
packaging at h P s Colorado Integrated Circuits Di-
vision Dave's work has resulted in two patents, one
describing a method of sampling a 1 00-GHz opti-
cal pulse stream, and another for a method of de-
positing tungsten for integrated ctrcuit intercon-
nects HIS profess onal interests include integrated
circuit process engineering, electromagneric
fields. circuit analysis, and oprical electronics He
publfshed a paper in the Journa, of Applied Physics
whie at MIT, and has coauthored three conference
papers on electronic packaging He received his
BSEE degree in 1972 and MSEE degree in 1976
from the University of Wisconsin at Madison, and
earned a PnD degree in 1979 from the Massa-
chusetts Institute 01 Technology Dave served as
a weather observer in the U S Air Force from 1963
to 1967, attaining the rankof sergeant Born .n Bar-
ron. Wisconsln, heis married, hastwoooysand a
gir , and res des in Fort Col ins. Colorado hls hoo-
Dies nclude we ght lifting and taking karate lessons
witn n s children Dave says rhey hold advanced
be IS in the martial arts. but ne's still working on the
basics

Frank J. P a d o n s o
Frank Perezalonso
specializes in hardware de-
sign engineering and
analog circuit design and
measurements He joined
HP Laboratories in 1984 as
a semiconductor process
technician. and is now a
member of the technical
staff of HPs Circuit Tech-

I

nology Group He worked on the electrical charac-
terization of the high-performance HP 408C PGA
integrated circuit package In the past, Frank was
involved in E-beam lithography process develop-
ment, evaluation and test of HPs membrane probe
card, and test methods forthe electrical characteri-
zation of IC packages Before he joined HP, he
worked on semiconductor processing for Fairchild
Semiconductor Corp and as an instructor in math,
physics, and semiconductor processing at Foothill
College in Los Altos, California He studied
semiconductor processing at Foothill College, re-
ceived a BSEE degree in 1985 from the University
of Santa Clara, and expects to receive his MSEE
degree in December Born in Managua,
Nicaragua, Frankis married, has adaughter, and
lives in San Jose, California He enjoys sports and
teaching

78 =Statistical Simulation

Chee K. Chow
Manufacturing develop-
mentengineer CheeChow
specializes in computer-
integrated manufacturing,
manufacturing data bases,
and analog and microwave
circuits He joined HPs
Santa Clara Technology
Center in 1984 and has

I done research in statistical
ctrcuit simulations for clrcuit designs He recently
rransferred to HPs Microwave Semiconductor
Division In the past, Chee worked on bipolar high-
speed circuits at HP, and researched coal conver-
sions and materials at Washington State University,
where he receivea his PhD degree in 1974 in phys-
cal chemistry He also earned an MS degree in
1984 6n elecrrica engineering from Oregon State
University Chee is the author of 15 technical arti-
cles on fuel processing, physical chemistry, and
e ectronics

82 =Air Flow Analysis

Kent P. M1seg.d.s
As manager of computer
fluid dynamics applications
at Cray Research, Inc.,
Kent Misegades collabo-
rated with HP on airflow
simulation in the HP 9000
Model 850 computer. At
Cray Research, he is re-
sponsible for all fluid
dynamics-related applica-

tions in the aerospace, automotive, metals, elec-
tronics, and chemical industries. His experience
also includes work as an aerodynamicist for Dor-
nier GmbH in West Germany from 1980 to 1984.
A member of the AIAA, Kent's professional in-
terests include aircraft design and fluid mechanics.
He is a graduate of Auburn University with a BSc
degree (1 979) in mechanical engineering, and has
anMEdegree(1980) influiddynamicsfromthevon
Karman Institute in West Germany. Born in Los
Angeles, California, Kent is married, has three chil-
dren, and resides in Eagan, Minnesota. His hob-
bies include aircraft design and radio-controlled
sailplanes.

Vivek Manslngh
Since joining HPs Systems
Technology Division in
1987, Vivek Mansingh has
3erformed research and
development in thermal
management of electronic
equipment in the com-
pany's mainline systems
lab Using finite-element
modeling, he analyzed

three-dimensional air flow in the HP 9OOO Model
850 computer Before pining HP. Vivek taught at
Lehigh Universityfrom 1986to1987 Amernberof
the ASME, the IEPS, and the CHMT, he has au-
thored or coauthored 12 technical publications on
thermal fluids, and is named an inventor on a pend-
ingpatent.HeearnedhisMSandPhDdegreesin
1986 from Queen's University in Canada, studying
mechanical engineering and specializing in ther-
mal fluids Born in Fatehpur, India, Vivek is married,
has two children, and lives in Santa Clara, Calrfor-
nia Heenjoys traveling with his family and singing
Indian music with a professional group His
hobbies include jogging, tennis, and badminton

26.5-to-75-G Hz Preselected Mixers
Based on Magnetically Tunable Barium
Ferrite Filters
A new resonator material-barium ferrite--and a new four-
sphere design are featured in a series of magnetically
tunable preselection filters for the millimeter-wave
frequency range.

by Dean B. Nicholson, Robert J. Matreci, and Michael J. Levernier

HE NEED FOR HIGHER PERFORMANCE has driven
the frequency ranges of systems and components T from the microwave range (under 30 GHz) into the

millimeter wavelengths (30 to 100 GHz). Moving to higher
frequencies makes it possible, for example, to increase the
antenna gain of small reflectors and to improve the spatial
resolution of imagers. The benefits of the move to milli-
meter-wave bands are being felt in many fields, especially
communications, remote sensing, and defense.'

The spectrum analyzer, a calibrated receiver with vari-
able resolution, is an important basic tool for testing and
troubleshooting such systems. Microwave spectrum
analyzers use advanced technology to provide accurate,
unambiguous frequency-domain measurements. Hewlett-
Packard has extended these measurements into the mil-
limeter-wave bands.

A new series of preselected spectrum analyzer RF sec-
tions, the HP11974 Series preselected mixers, makes milli-
meter-wave spectrum analyzer measurements faster and
easier by removing image and multiple responses from the
spectrum analyzer display, thereby eliminating the need
for complicated signal identification routines. Each RF sec-
tion consists of a mixer to down-convert millimeter-wave
signals into the intermediate frequency range of HP micro-
wave spectrum analyzers, and a magnetically tuned pre-
selection filter to remove unwanted signals. The preselec-
tion filter uses barium ferrite resonator material, doped so
that it starts resonating at the beginning of the waveguide
band (see article, page 591.

Table I lists the four preselected RF sections and their
frequency ranges. Each RF section covers a full waveguide
band (+20% bandwidth), one of the four standard bands
from 26.5 to 75 GHz.

The HP 11974 Series preselected mixers are compatible
with the HP 8566B spectrum analyzer, the HP8563A port-
able spectrum analyzer, the HP 70000 modular measure-
ment system with the HP 70907B external mixer interface
module, and other HP microwave spectrum analyzers.
They provide a displayed average noise level at 10-Hz
bandwidth that is lower than -106 dBm in the A, Q, and
U bands and lower than -95 dBm in the V band. Image
rejection is better than 55 dB in all four bands.

Table I
HP Millimeter-Wave Preselected
Spectrum Analyzer RF Sections

(HP 11974 Series Preselected Mixers)

RF Section Waveguide Frequency

HP11974A A 26.5 to 40 GHz
HP11974Q Q 33 to 50 GHz
HP11974U U 40 to 60 GHz
HP11974V V 50 to 75 GHz

Band Range

Methods of Extending the Frequency Range
There are three principal ways to extend the frequency

range of a microwave spectrum analyzer. The first method,
shown in Fig. la, uses a classic superheterodyne receiver
front end. A tracking preselector and a local oscillator (LO)
both sweep the same frequency span, separated by the in-
termediate frequency (IF). The preselector prevents spuri-
ous responses, such as images or intermodulation products,
from being displayed. The LO must be phase-locked and
have reasonably low phase noise. To use this method, high-
Q resonators and active devices maintaining negative resis-
tance across the full waveguide bands would have had to
be developed. The design would have been intricate and
expensive. These technological difficulties eliminated this
method from consideration for the HP 11974 Series. Fig.
2 shows where this type of millimeter-wave extender
would interface with the mainframe microwave spectrum
analyzer.

A block down-converter, shown in Fig. Ib, eases the
local-oscillator problem by using one fixed oscillator per
band instead of the swept LO of the superheterodyne re-
ceiver. With this down-converter, input RF frequencies are
converted to an identical but lower frequency span (swept
IF). The swept IF can be arranged to be within the range
of the microwave spectrum analyzer. Even though the res-
onator and the active devices are operated at a single fre-
quency, designing for performance and cost still poses a
formidable problem. Also, this method lacks a tracking
preselector, so the first mixer is subject to distortion caused

OCTOBER 1990 HEWLETT-PACKARD JOURNAL 49

WWW. H PARC HlVE.COM

Fundamental

(Fixed) IFOut
321 MHz 50 to 75 GHz

Phase

A 50.32 to 75.32 GHz

fwle
Rwnp

3.54 to 5.33 GHz

. "
Tune Ramp

m. 1. Three types of RF sections for extending the frequency
range of a spectrum analyzer. The letters A, E , C, and D refer
to Fig. 2, which shows where these RF sections connect to
the spectrum analyzer. (a) The superheterodyne RF section
uses a swept pres&ec& and a swept local oscillator (LO).
?he phass-locked loop is used to set the beginning of the LO

(6) The block down-converter has a fixed
LO anda swept intarmediate frequency (IF). (c) The harmonic
mixer version of the superheterodyne RF section.

- -
span of the IF can cause another problem. It requires a very
wide-bandwidth IF amplifier to improve the sensitivity of
the microwave analyzer, which is used as avariable IF strip.

The preselected harmonic mixer version of the super-
heterodyne front end, shown in Fig. IC, provides a reason-
able compromise. The preselector protects the mixer from
spurious responses. The mixer, a harmonic type, uses a
millimeter-wave harmonic of the existing microwave LO
in the analyzer. The conversion loss of such a harmonic
mixer exceeds that of the fundamental harmonic mixer
shown in Fig. la, but the design effort goes into the preselec-
tor, which is a passive component and therefore somewhat
easier to design than a millimeter-wave LO. (Of course,
once the resonators for such a preselector are available, a
wideband oscillator m ctiv
can be obtained.)

Block Diagram
The method of Fig. IC was chosen for the HP 11974

Series preselected mixers. Fig. 3 shows the HP 11974 block
diagram. The RF signal that ie; to be down-converted to IF
enters the waveguide flange of the tunable preselector
shown in Fig. 3, then goes to the isolator and the HP 11870
Series harmonic mixer. Electromagnets in the preselector
develop a magnetic field, which tunes the preselector. The
scaling electronics transforms the tune ramp voltage of the
spectrum analyzer into magnet current.
The unbiased harmonic mixer was developed previ-

ously2 to extend spectrum analysis into the millimeter-
wave range. If used without a preselector, the mixer can-
verts the FtF signal to an IF whenever an LO harmonic
sweeps past the RF. However, the horizontal frequency
scale is only calibrated for a single harmonic of the LO,
the 14th for the V-band example shown in Fig. 4a. The
desired response, the 14+ signal in Fig. 4a, appears as a
result, as do several unwanted responses resulting, for
example, from the 12th' lSth, and higher harmonics.

In the spectrum shown in Fig. $a, the RF input consists
of several signals from the frequency comb of a multiplier
with outputs every 5.1 GHz. The unpreselected harmonic
mixer shows several unwanted responses to each comb

Harmonic
Mixer

21-MHt

RF Input
2 to 28 GHz

W
sweep
3amp

qwp - Generator IA

Fig. 2. Microwave spectrum ana-
lyzer block diagram, showing inter-
face points (A, E, C, 0) with the
millimeter-wave RF sections shown
in Fig. 1.

10 HEWLETT-PACKARD JOURNAL OCTOBER 1990

I BaFe-Tuned Preselection Filter

IF Output
(310 or 321
MHz)

LO Input
(3 to 6 GHr)

Tune 9 Input

Delay
Compensation

Tempemtun,
Compensatior ine Line Scaling

, *

HP 8563A

0-HP 70907E

+ RE
10 dB/

CNVLOSS
36. 0
dB

START 50.0 CHz
RES BW 300 kHz VBW 30 kHF

PRESELECTED

STOP 7 5 0 GHn
SWP 7.50

,+ REF 0.0 dBm HARMONIC 14L

10 dE/

CNVLOSS
45. 0
dB

START 50.0 GHz STOP 75.0 GHz
RES BW 300 kHz VBW 30 kHz SWP 7.50 -PO

Fig. 3. HP 11974 Series prese-
lected miilimeter-wave RF section
block diagram.

Fig. 4. (a) An unpreselected spec-
trum analyzer sweep from 50 to
75 GHz for an input signal consist-
ing of comb lines from a multiplier.
There are several unwanted re-
sponses to each comb line. The
harmonic responses to the 51-
GHz comb line are labeled. (b) A
preselected spectrum analyzer
sweep for the same input signal.
The multiple responses are elimi-
nated and the multiplier comb
lines every 5.1 GHz are clearly
displayed.

OCTOBER 1990 HEWLETT-PACKARD JOURNAL 51

line, thereby producing many responses, most of which
are unwanted and severely hamper measurements.

The HP 11974 preselected mixers add a waveguide track-
:> ing preselector to the harmonic mixer. The resulting V-band

display is shown in Fig. 4b. Here, only one response occurs
for each of the five comb lines.

E"'
Hexagonal Ferrite Filter Design

Having decided to design the HP 11974 Series by adding
tunable bandpass filters as preselectors to the HP 11970
Series unpreselected harmonic mixers, we looked for the
easiest way of doing things to make the best use of our
resources. At the outset, we had decided to use doped
hexagonal ferrite spheres as filter resonator elements. Their
built-in frequency offset (see article, page 59) allowed
us to employ existing YIG tuning magnet designs to cover
waveguide bandwidths. Because the HP 11970 mixers have
TE,, waveguide inputs, and because it seemed extremely
difficult to reduce typical YIG filter loop coupling struc-
tures (Fig. 5) to the small sizes that would be required to
make filters for the highest-frequency band (50 to 75 GHz),
we decided to use TE,, waveguide as the transmission
medium in our filter.

The high-frequency (53 to 8O'GHz) barium ferrite filter
work done by Lemke and Hoppe3 served as a starting point
for our filter design. Their two-sphere, iris-coupled filter
used crossed input and output waveguides (Fig. 6) and
produced RF magnetic fields in the two waveguides that
were perpendicular to each other at the iris to reduce out-of-
band leakage. A linear taper was used to reduce the height
of the waveguide to allow a smaller gap between the magnet
pole tips.

A two-sphere filter was built in U band (40 to 60 GHz)
to demonstrate the feasibility of the crossed waveguide
filter approach.4 This filter had typical insertion loss of 4.5
dB, a 3-dB bandwidth of 325 MHz, and off-resonance iso-
lation greater than 30 dB. The spheres were aligned on
beryllia rods, which were slipped into holders that allowed
k O . 1 mm of sphere adjustment from side to side and up
and down in relation to the iris. The sphere rods were
inserted through the reduced-height sidewall of the
waveguide so that it was possible to center the spheres
exactly over the iris and to move them closer together or
farther apart to change the sphere-to-sphere coupling. In
Fig. 7, the response of this filter is shown centered at ap-
proximately 48.5 GHz and moved up by 4.5 dB so the
off-resonance isolation can be read easily off the plot.

The low-frequency side of the filter's response cuts off
more quickly than the high-frequency side, and 650 MHz
away from the peak of the passband the rejection is about

Fig. 6. Two-sphere waveguide bandpass filter.

35 dB. The rejection of a filter 650 MHz away from the
peak is important for preselection applications because the
IFs used in the HP instruments are approximately 310 A4Hz
and 321 MHz. An unpreselected mixer will display an
image signal at the same amplitude as the true signal at
two times the IF away from the true signal. Therefore, much
of a filter's usefulness depends on its image rejection,
which is a measure of how much this unwanted trace is
suppressed. By adjusting the spheres farther apart or closer
together, and by changing the iris diameter and the sphere
size, the best compromise between filter insertion loss, image
rejection, and off -resonance isolation can be achieved.

Two-sphere filters were built in the other millimeter-
wave bands using the information obtained from the U-
band filter and applying appropriate scaling factors. The
results for insertion loss and off-resonance isolation for the
family of two-sphere waveguide filters5 are shown in Figs.
8 and 9, respectively. The 3-dB bandwidths of these filters
were 200 to 350 MHz. Although the insertion loss results
were acceptable, the image rejection and off-resonance iso-
lation of these filters were not sufficient for instrument
applications. The goal was then changed to design a filter
with off-resonance isolation and image rejection greater
than 55 dB.

A literature search showed three-sphere and four-sphere

-15 I \

RF In

-40v -45

IHo
Fig. 5. A single stage of a typical WG filter.

-50 1 I I l l I 1 I I 1
I I I I I i

45 50 55
Frequency (GHz)

Fig. 7. Two-sphere U-band filter response.

52 HEWLEIT-PACKARD JOURNAL OCTOBER 1990

6 5
3 VBand QBand 7

p-lo

g -20
P - --

--

Fig. 8. Insertion loss of two-sphere filters.

9--

waveguide filter designs, but none of them would give the
required off-resonance isolation at millimeter-wave fre-
quencies. Our next design consisted of two of the above
two-sphere filters under one set of magnet pole tips, con-
nected by a very short transverse waveguide (Fig. 10). This
four-sphere filter configuration does not increase the mag-
net pole tip separation, but in theory should double (in
dB) the insertion loss, off-resonance isolation, and image
rejection of the two-sphere filters previously built. To
simplify the mechanical design, sphere mounts were
machined from low-dielectric-constant plastic and epoxied
over the irises. Resonator spheres were then placed on the
sphere mounts, aligned and epoxied in place (Fig. 10). This
sphere mounting technique allows accurate measurement
of the sphere separation after mounting to determine
sphere-to-sphere coupling.

The one significant difference that was expected in going
to the four-sphere design was the possibility of the two
irises and the short transverse guide (one wavelength long
at approximately 80% of band) forming a coupled-cavity
bandpass filter that might give a fixed-frequency spurious

I I I I I I I I 1
I I I I I I

I \a I
1

-70 #I
0 10 20 30 40 50 60 70 80 90 100

Yo of Band

Fig. 9. Off-resonance isolation of two-sphere filters.

response. When the first four-sphere filters were turned
on, they gave the expected double (in dB) off-resonance
isolation, insertion loss, and image rejection, as well as the
cavity-mode response (Fig. 11). By narrowing the width of
the input and output waveguides and moving the spheres
off-center towards the center of the filter, the one-
wavelength cavity mode can be pushed 5 to 6 GHz above
the top frequency in the band. The one-wavelength cavity
mode can thus be eliminated by shortening the transverse
guide. However, this brings the one-half-wavelength cavity
mode in-band at about 15% of the band. The one-half-
wavelength cavity mode is not as strong as the one-
wavel'ength mode, and can be suppressed very well (Fig.
12) by introduction of a distributed loss in the transverse
guide to detune the cavity. This loss is effected by a thin
sheet of Kapton (plastic) between the sides of the transverse
guide and the iris plate to allow some energy to leak out.
The Kapton sheet is shown in Fig. 13, which also shows
the four-sphere filter assembly.

Four-sphere filters using scandium-doped barium fer-
rites as resonators are presently being built in A, Q, U, and

e

Fig. 10. Four-sphere filter design.

OCTOBER 1890 HONLEIT-PACKARR JOURNAL 53

, -
WWW.HPARCHIVE.COM

to determine the millimeter-wave frequency to w
pectrum analyzer is tuned. This voltage is then
d to a coil current that will tune the filter to the a

Ref 0.0 dB

priate frequency.
To provide the correct current to the filter,

versus-coil current characteristics of the filte
into account. The frequency of the bariu
varies linearly with current, and a straight-line approxima-
tion is sufficient. For example, a V-band filter typically

than +go MHz over the entire range from 50 to 75 GHz.
Small tuning nonlinearities are compensated by using the
preselector peak function of the spectrum analyzer. This
function provides a small offset to the tune voltage to peak
the filter on the signal being measured.

Because of the internal anisotropic field of the barium
ferrite spheres, very little current is required to tune the
filters to the lowest frequency of the band. For all four
bands, from 26.5 GHz to 75 GHz, the coil current required
at the lowest frequency is approximately 70 milliamperes.
The filters then tune to higher frequencies at a rate of 60
to 70 GWampere. As a result, the widest frequency bands
require the most current. me A band, with a span of 13.5

c P
b?

-
r deviates from a straight-line tuning equation by no more

75
Frequency (GHz) 50

Fig. 11.
resonan

Ode

V bands. They typically have insertion loss of 8 to 12 dB,
3-dB bandwidth of 120 to 200 MHz, image rejection greater
than 55 dB, and off-resonance isolation greater than 70 dB.
These performance figures represent trade-offs that were
made between the different parameters. For instance, by
mounting the spheres closer together (top to bottom) a four-
sphere V-band filter was made having 4 to 6 dB insertion
loss across the band. Unfortunately, because of the tighter
sphere-to-sphere coupling, the filter skirts were wider and
the image rejection was degraded.

Filter Drive Circuitry
For proper system operation, the barium ferrite filter

must track the input frequency of the spectrum analyzer.
The HP 11974 Series preselected mixer receives a tune-
ramp voltage from the spectrum analyzer that is propor-
tional to the frequency of the spectrum analyzer’s first local
oscillator. For any given band, assuming a certain harmonic
number, mixing sense, and mixer IF, this voltage is suffi-

Magnet

In puWOutput
Waveguide

Iris Plate
Barium Ferrite
Resonator Spheres

Kapton Sheet

Ref 0.0 dB, 10.0 dBI

T

50
Frequency (GHz)

75

Fig. 12. Four-sphere filter response wifh cavity mode sup-
pression. Fig. 13. Four-sphere filter assembly.

Transverse
Waveguide

Magnetic Center
Body

Magnet

64 HEWLElT-PACKARD JOURNAL OCTOBER 1990

GHz, typically requires 270 milliamperes of coil current to
tune to 40 GHz. V band, with a span of 25 GHz, typically
requires 425 milliamperes of coil current to tune to 75 GHz.
Coil current is provided by a 50-volt power supply. The
coil current flows through the filter coil, a transistor that
controls the amount of current flow, and a 3.10 resistor
that is used to monitor the current flow, as shown in Fig.
14. To minimize the temperature dependent tracking er-
rors, the 3.10 resistor has a low temperature coefficient, 5
ppmPC, as do resistors in other critical locations. The
power supply was chosen to be 50 volts to accommodate
the voltage drops across all of the above items. The capaci-
tor across the coil shunts unwanted high-frequency cur-
rents away from the coil. The Zener diode across the coil
provides a discharge path for the coil at the end of a sweep,
when the current through the transistor goes to zero.

The effect of temperature on the filter's frequency is
another consideration in filter tuning. Some filters, such
as the Q-band filter, have very little frequency drift with
temperature, while others, such as the V-band filter, are
very sensitive to temperature. With a constant coil current,
a V-band filter drifts at a rate of +11.4 MHzPC. For a tem-
perature increase of 50"C, the center frequency of the filter
would increase by nearly 600 MHz. Compensation for the
temperature drift had to be considered because the 3-dB
bandwidth of the filter is typically between 120 and 200
MHz, and this would mean that an input signal would no
longer be within the passband of the filter.

Temperature and Delay Compensation
Temperature drift is compensated by monitoring the tem-

perature at the filter and modifying the coil current. A
thermistor network is used to monitor the temperature of
the filter. The thermistor network consists of a thermistor
composite composed of two thermistors encapsulated in
epoxy and two linearizing resistors. The thermistor com-

posite is located in the waveguide portion of the filter as-
sembly (Fig. 13) and tracks the temperature at the barium
ferrite filter. The network has a temperature dependent
resistance that is linear from 0 to 100°C. The thermistor net-
work is connected as the feedback portion of an amplifier
that generates a voltage equivalent to the amount of filter
frequency correction required. This voltage is then summed
into the voltage that generates the filter coil current.

Although the temperature compensation required varies
from band to band, the filters of each band are very consis-
tent from unit to unit and across the frequency band. This
consistency allows the correction to be based on tempera-
ture only. In the A and Q bands, the filter drifts lower in
frequency with increasing temperature, while in the U and
V bands, the filter drifts higher in frequency with increasing
temperature.

Fig. 15 shows the frequency tracking errors of a V-band
filter at O"C, 25"C, and 75°C with no temperature compen-
sation applied. The frequency tracking errors of the 25°C
trace represent the deviations from a linear relationship
between the filter coil current and the filter frequency. The
spacing between the three traces represents the temperature
drift of the filter with no temperature compensation ap-
plied.

Fig. 16 shows the frequency tracking errors of the same
V-band filter with the temperature compensation circuitry
enabled. The remaining frequency tracking errors fall
within a range approximately equal to the 3-dB bandwidth
of the filter. The preselector peak function of the spectrum
analyzer removes these errors at a particular frequency.

In addition to temperature effects, compensation must be
provided for the effect of filter tuning delay. When the
spectrum analyzer sweeps at a fast rate, the filter, tuned
by the current through a coil with inductance of about 0.8
henry, tends to lag behind. This effect is compensated by
placing a differentiator in the HP 11974 tune voltage path.

Differential
Amplifier

lune Voltage
Error Indicator High-Frequency

Reference Voltage I LED li -y

Cornpentiatation
Capacitor Adjustable

Galn and

Tune In

Spectrum
Analyzer

Dependent
Gain and

Offset

Coil

1

voltage-
to-Current
Converter

6 Flg. 14. Simplified HP 11974 filter
drive circuitry.

OCTOBER 1990 HMILElT-PACKARD JOURNAL 55

WWW. H PARCHIVE.COM

- 0 %
IL -400

-600 I I I I 1 I I I
I I 1 I I I I

50 60 70 80
Filter Frequency (GHz)

Flg. 15. V-band filter tracking error without temperature com-
pensation.

At slow sweep rates, this circuit has no effect. At fast sweep
rates, additional coil current is provided to help the filter
keep up with the spectrum analyzer. With this compensa-
tion applied, the spectrum analyzer can be swept at a
maximum sweep rate of 40 GHzlsecond.

Sp8ctrum Analyzer Compatibility
The HP 11974 Series preselected mixers are designed to

operate with three families of Hewlett-Packard spectrum
analyzers: the HP 70000 modular spectrum analyzer family
with the HP 70907B external mixer interface module, the
rugged, portable spectrum analyzer family including the
HP 8560A, HP 8561B, HP 8562A, and HP 8563A, and the
HP 8566B, a high-performance R&D bench spectrum
analyzer. Fig 17 shows the HP 11974 Series and the spec-
trum analyzers. Older models of these spectrum analyzer
families can be made compatible by installing a retrofit kit.

To be compatible with the HP 11974, the spectrum
analyzer must meet certain requirements. First, the spec-
trum analyzer must have a first LO frequency range of 3
to 6 GHz at the proper power level. The nominal power
level of the first LO output is +14.5 dBm to +16 dBm.
Second, the first IF of the spectrum analyzer must be com-
patible with the HP 11974. Each spectrum analyzer men-
tioned above has a first IF of either 310.7 M H z or 321.4
MHz. Finally, the spectrum analyzer must provide a voltage
output that is proportional to the frequency of the first Lo

Y "2001 -400

-600 ! 1 I I 1 1 I 1 I I I 1 I I I

50 60 70 80
Filter Frequency (GHz)

Fig. 16. V-band filter tracking error with temperature compen-
sation.

of the spectrum analyzer. Each of the three spectrum
analyzer families has a different definition for the tuning
voltage provided. Because of this, the HP 11974 has
switches that are used to identify the spectrum analyzer
with which it is to be used. For each switch setting, a
speciflc gain and offset are applied to the tune voltage so
that the filter will be properly tuned.

Another requirement for the tune voltage of the spectrum
analyzer is that it have a variable offset summed in. The
correct amount of offset to apply at any given frequency is
determined by the preselector peak function.

Before operating the HP 11974 with the spectrum
analyzer for the first time, two potentiometer adjustments
must be made. These adjustments match the tuning volt-
ages provided by the spectrum analyzer to the reference
voltages in the HP 11974. After these adjustments are made,
the preselector filter will track very well the input fre-
quency of the spectrum analyzer. The preselector peak
function is used to eliminate the remaining frequency track-
ing errors at any given frequency. When executed, this
function causes the spectrum analyzer to vary its tune volt-
age to the HP 11974 and monitor the signal level of the
marked response on the screen. At the maximum response
level, the filter has been peaked. The frequency range of
the preselector peak function is proportional to the har-
monic number on which the mixer operates. For most of
the analyzers, the preselector peak range is 2260 MHz in

Fig. 17. HP 11974AIQIUIV pre-
selected millimeter-wave RF sec-
tions with mainframe microwave
spectrum analyzers (HP 8563A,
HP 85668, HP 7oooO).

11974V CALIBRATION

SN:3001A00104 17 Apr 1990

CONV.
LOSS
(dB)

n= 14+ IF-321.4 MHz LO Power=l6dBm 52

4 0 .

I-
J

44

40

%O 55 60 65 70

FREQ . CONV. LOSS

50.00

50.50

51.00

51.50

52.00

52.50

53.00

53.50

54.00

54.50

55.00

55.50

56.00

56.50

57.00

57.50

58.00

44.90

44.08

44.44

44.90

43.97

44.04

43.56

43.59

43.22

44.16

43. 11

42.88

42.74

43.02

42.79

42.18

42.37

FREQUENCY (GHz)

FREQ. CONV. LOSS

58.50 42.54

59.00 42.25

59.50 42.74

60.00 42.81

60.50 43.03

61 - 0 0 42.27

61.50 43.30

62.00 42.92

62.50 43.29

63.00 42.93

63.50 43.16

64.00 43.09

64.50 42.98

65.00 43.07

65.50 43.40

66.00 43.92

66.50 43.33

1

FREQ. CONV. LOSF

67.00

67.50

68.00

68.50

69.00

69.50

70.00

70.50

71 .OO

71.50

72.00

72.50

73.00

73.50

74.00

74.50

75.00

43.37

43.51

44.31

44,05

44.28

44.49

45.61

45.53

44.57

45.40

45.68

45.91

45.76

45.78

46.53

46.38

46.66

Fig. 18. Conversion loss calibration chart is supplied with each RF section. The data is entered
into the mainframe spectrum analyzer.

OCTOB 190 HEWLEll-PACKARD JOURNAL 67

'nnW. H PARC HIVE.COM '

rn

Martini, Mike Brown, and Steve Flint designed the retrofit
kits vital to the project. Marketing efforts were by Eric
Brown and Dennis Handlon. Important early development
work on the filter and test routines was performed by Jim-
mie Yarnel, Dennis Derickson, Matt Fowler, and Hiroshi
Imiazumi. Summer intern Davie Zoneraich built the first
version of the millimeter tracking generator test set. Our
lab section management, Frank Angelo and Toni Coon,
endured endless project reviews and kept us inspired. And
then there is Frank David, who peeled the company’s first
layer from the millimeter onion a decade ago.

References
1. R.A. Shaffer, “Promising Uses are Emerging ror Millimeter
Radio Signals,” The Wall Street JOURIQ~, June 26, 1981, pg. 29.
2. R.J. Matreci and F. K. David, “Unbiased Subharmonic Mixers
for Millimeter-Wave Spectrum Analyzers,” IEEE MTT-S Interna-
tional Microwave Symposium Digest, 1983, pp. 130-132.
3. M. Lemke and W. Hoppe, “Hexaferrite Components-Tunabil-
ity at mm-Waves,” Proceedings of the Conference on Military Mi-
crowaves, London, 1980, pp. 95-100.
4. D. Nicholson, “A High Performance Hexagonal Ferrite Tunable
Bandpass Filter for the 40-60 GHz Region,” IEEE MTT-S Inter-
national Microwave Symposium Digest, 1985, pp. 229-232.
5. D. Nicholson, “Ferrite Tuned Millimeter-Wave Bandpass Fil-
ters With High Off Resonance Isolation,” IEEE MTT-S Interna-
tional Microwave Symposium Digest, 1988, pp. 867-870.

Hexagonal Ferrites for Millimeter-Wave
Applications
Scandium-doped, M-phase barium ferrite has the
necessary properties. Crystals are grown and spheres are
processed and tested in-house.

by Dean B. Nicholson

become apparent with the magnetic components used to
. These problems include electromag-

e,1 applicable with
nlinearities, and hysteresis.

The tuning equation of a YIG sp
H, parallel to H,, is:

where H, is the applied dc magnetic field and H, is the
internal anisotropy field (70 Oe for YIG). Using this equa-

mum usable frequency of a YIG sphere can
be calculated to be about &4 GHz, assuming that the material

has the highest satura-

of as a built-in magnetic field that acts along a crystal axis,
or in some cases plane. When the anisotropy field
is parallel to the field, it gives a frequency offset
that reduces the applied dr: magnetic field needed for reso-
nance at a given frequency.

It was obvious that a new resonator material would be

118

1

10

koS

I I I I I i 10 15 20 25
Applied DC Magnetic Field He (kOe)

Fig. 1. Ferrite resonance frequency as a function of dc mag-
netic field for various values of the anisotropy field.

lters to serve as pre-

band (50 to 75 GHz).

would be possible to build magnetically tunable bandpass
filters that cover waveguide bands in the millimeter-wave
region using moderate magnetic tuning fields (Fig. 1). A
class of material with this property is the hexagonal fer-
r i t e ~ . ~

PropWm~ of Hexagonal Ferrttes
Hexagonal ferrites me SO named because this class of

onal crystal. Hexagonal
by their phase and composition. For example, M-phase
barium ferrite is BaFe,,O,,.

The minimum useful frequencies listed in Fig. 3 come
from three constraints. First, with the ania;otmpy field

lee0 MWLETT-PAGWD JOU

.MPA

Nobw 1. So and Al doping8mnkwri.d oontlnuourly.
2. Y ph.s~ has phrurr an-. f, = (2.8 M W ~) (H J ~ + H J) ’ ~

when the anisotropy plane Is aligned with both dc and RF fleids.

Fig. 3. Summary of hexagonal ferrite and YIG parameters.

3 ferrite sphere with the applied magnetic field aligned
with Ha will not all line up or “saturate” until a field of
at least 4?rM$3 has been applied. Third, for very high-Q,,
(unloaded Qt ferrites at low frequencies, such as YIG, with
fields between one and two times 47rM$3, the effect known
as coincidence limiting’ limits the amount of power that
a ferrite device can handle to much less than 0 dBm. There-
fore, YIG spheres are generally used with applied fields
above two times 47.rMSB. For hexagonal-ferrite-sphere-
tuned devices, this power-limiting effect has not been seen
at power levels up to 20 dBm for our bandpass filter con-
figurations and thus should not present a problem for this
application.

As Fig. 5 shows, scandium and aluminum dopings can
be varied arbitrarily in M-phase hexagonal ferrites to give
the desired Ha? The scandium-doped M-phase barium fer-
rite will satisfy the frequency range requirements at the
lower frequencies while the aluminum-doped M-phase
strontium ferrite will satisfy the requirements at the higher
frequencies. Although it is possible to dope M-phase
barium ferrite with aluminum to raise its resonant fre-
quency and dope M-phase strontium ferrite with scandium
to lower its resonant frequency, in general, the higher the
doping level the more the Q, of the resonator is degraded.
Therefore, dopants and materials are chosen so that the

Flg. 4. Uniaxial anisotropy in hexagonal ferrites

60 HEWLElT-PACKARD JOURNAL OCTOBER 1990

C

K

least amount of dopant is used to cover a given
range.

Other desirable propedes of M-phase hexagonal ferrites
are that they have high 47.rMB/3 for good coupling to the
RF fields, high Curie temperatures for low sensitivity to
temperature change, and fairly high Q,.

40

30

H - 20

I”

10

0
0 1 2

X

Fig. 5. Anisotropy field changes with doping. Adept& with
permission from reference 4.

\N\N\N HPARCHIVF COM

Sphere Production and Test
Once the selection of the M-phase hexagonal ferrites was

made and it was found that crystals were unavailable com-
mercially, a crystal growth program was begun at the HP
Microwave Technology Division. In the literature, hexag-
onal ferrite crystals are typically grown from a BaO/B,O,
flux using slow cooling. We used a slow cooling furnace
with multiple small crucibles per run and free nucleation
(no seed crystals) for quick optimization of charge compo-
sition and temperature profiles. Now that growth condi-
tions have been optimized, a single larger crucible is used
for each growth run with a larger charge so that larger
crystals can be grown. The total volume of liquid charge
in the crucible at the start of crystal growth is approximately
320 ml. The total weight of crystals obtained from the
growth is about 70 grams.

The processing of hexagonal ferrites to spheres is concep-
tually very similar to YIG sphere processing. Because of
the brittle nature of hexagonal ferrites, proprietary grinding
and polishing techniques had to be developed to avoid
chipping the sphere poles. In addition, a separate sphere
testing system was developed to test the Q, of the hexagonal
ferrite spheres, which must be tested at the millimeter wave
frequencies at which they will be used.

Summary
Because of their high magnetic anisotropy fields, spheres

made of suitably doped M-phase hexagonal ferrites were
chosen as resonator elements in magnetically tunable
bandpass filters. These bandpass filters cover waveguide
bands above 26.5 GHz and are used as preselectors in the
HP 11974 Series of millimeter preselected RF sections.
When no outside supplier of hexagonal ferrite spheres
could be found, crystal growth and sphere processing and

test capabilities were developed in-house.

Acknowledgments
I would like to acknowledge Frank Gary for developing

the sphere grinding and polishing processes and assisting
with crystal growth. Without his help the project would
have been immeasurably more difficult. In addition, I
would like to thank Jerry Gladstone for management sup-
port even when the success of the project seemed uncertain
at best.

References
1. B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics,
McGraw-Hill, 1962, pp. 164-165.
2. HipercoR 50 Specifications, Carpenter Technology Corpora-
tion.
3. G. WinMer and H. Dotsch, “Hexagonal Ferrites at Millimeter
Wavelengths,” Proceedings of the 9th European Microwave Con-
ference, 1979, pp. 13-22.
4. P. Roschmann, M. Lemke, W. Tolksdorf, and F. Welz, “Aniso-
tropy Fields and FMR Linewidth in Single-Crystal AI, Ga, and Sc
Substituted Hexagonal Ferrites with M Structure,” Materials Re-
search Bulletin, Vol. 19, February 1984, pp. 385-392.
5. W. Tolksdorf, “On the Preparation of Polycrystalline
Zn,Ba,Fe,,O,, Especially With Respect to Added Biz03,” IEEE
Transactions on Magnetics, Vol. MAG2, no. 3, September 1966,

6. F.E. Reisch, R.W. Grant, and M.D. Lind, “Magnetically Tuned
Zn,Z Filters for the 18-40 GHz Frequency Range,” IEEE Transac-
tions on Magnetics, Vol. MAG-11, no. 5, September 1975, pp.

7. G.P. Rodrigue, “Magnetic Materials for Millimeter Wave Appli-
cations,” IEEE Transactions on Magnetics, September 1963, pp.

8. J. Helszajn, YIG Resonators and Filters, John Wiley and Sons,

pp. 472-473.

1256-1258.

351-356.

1985, pp. 101-102.

ocTof3a(1W HEMTT-pAcKARD JOURNAL 61

WWW. H PARCHIVE.COM

facility that includes a high-level Protocol Specification
Language, a testing facility, and a run-time facility for device
interfaces that run in an HP-UX environment on HP 9000
computers.

by Kent L. Garliepp, Irene Skupniewicz, John U. Frolich, and Kathleen A. Fulton

requiring a fairly high level of expertise. The pmcem gen-
erally consists of characterizing the device’s communica-
tion protocol and then writing, changing, or enhancing
programs, subroutines, and test suites. This process is well-
known to all interface developers and c

communications standards,
utomation Protocolz IhlzBg),

ice connectivity problems
1 improve significant-

ly. In the merurtime, many factory-floor devices exist and
have long useful lives remaining. Many are simple devices,
such as gauges with simple interfaces, that may never con-
form to a standard.
To reduce the cost of developing customized interfaces

for devices that need them and to shorten the time required
for such efforts, tools are needed to simplify the develop-
ment and testing of the interfaces. This is the objective of
the HP Device Interface System (HP DIS). HP DIS is a toolset
that helps developers create and test interfaces between
computer applications and RS-232-compatible factory-
floor devices in less time than before. The resulting inter-
faces run in an HP-UX environment on HP 9000 Series 300
or 800 computers.

HP DIS offers three facilities to make the development
and implementation of device interfaces more efficient. A
development facility provides a high-level Protocol
Specification Language3 for defining the communications
logic. A testing facility provides a test generator, a test

exerciser, and a device simulator. A run-time facility exe-
1 shows a typical pro-
of the HP DIS toolset.

8WKWC3 Corresponding Steps Using HP DIS

Understand application needs.

Understand device communication
protocol and message formats.

Design protocol interface
architecture, functionality, and
modularity.

Write application calls to protocol
interface. Create protocol interface
using the Protocol Specification
Language.

Tests

Create tests using the HP-DIS test
facility. hI

Define the configuration and
execute the protocol interface modules.

Fig. 1. The process of creating a device interface.

62 HEWL!?lT-PACKARD JOURNAL OCTOBER 1940

PSL Code

7
Dewelopmnt

Facility

Action
Routines

4

Executable Protocol
Interfaces and
State Tables

Configuration ’”” I

Fig. 2. HP DlS facilities.

User-Written
Test Cases

Testing
Facility

Test
Results

A
Test Case

Documentation

HP DIS system. The input to the compiler is a description
of the device protocol, written in Protocol Specification
Language (PSL). PSL allows the user to describe a state
graph and its associated state table in a high-level format
(see “Finite State Machine,” page 65).

Other inputs to the development facility are subroutines
that can be linked to the protocol interface. In HP DIS these
are called action routines (see “ActionRoutines,” page 69).

The run-time facility provides the execution environ-
ment for the protocol interfaces. When the protocol inter-
face runs, it communicates with ports, other protocol inter-
faces, and other C programs through HP-UX message
queues. Using a description of the protocol interface’s as-
sociated I/O ports, the run-time facility manages the ports,
message queues, process startup, and process shutdown.

State Tables.-q -vocumentation A Generator

Autogenerated
Test Cases User-Written

Test Cases

+Test Results Protocol Interface

Fig. 3. HP DlS testing facility.

Specify

Protoco
} the

Step 1:
Describe

the
Interface

HP-U.,
Testing
Facility
Process

Step 3:
Test

Represents an HP-UX
Message Queue

Fig. 4. Steps in protocol interface development using HP DIS.

The development and run-time facilities also provide

A contributed library of example protocol interfaces,
tutorial protocol interfaces, and other helpful tools . The ability to implement user-defined lookup tables . Eight-bit native language support . Access between multiple devices and multiple interfaces . The ability to add and delete protocol interfaces dynam-
ically in a running system.
A diagram of the HP DIS testing facility is shown in Fig.

3. This facility consists of a test generator and a test exer-
ciser.

The test generator takes the state table and creates test
cases. The test cases are fed to the test exerciser, which
executes each test case by sending messages to the protocol
interface under test. The test exerciser attempts to achieve
each state listed in the state table, for up to 100% coverage.

Optional inputs to the test exerciser are user-written test
cases. The test exerciser executes a sequence of test cases
and compares expected results to the results of the protocol
interface under test. Actual devices or VO ports are not
necessary for testing; factory-floor devices can be simulated
by describing their messages.

The output of the testing facility includes test case
documentation and test results. The testing facility also
provides the following features:
9 Full or partial data tracing

the following features:

Either menu-driven execution or script execution of test
cases . Protocol filters to simulate garbled messages, time-outs,
and expression matching . Notification of percentage covered.

OCTOBER 1990 HEWLETT-PACKARD JOURNAL 83

An HP DIS Example
There are three steps in developing an interface (see Fig.

4). The first step is to describe the interaction between the
application and the factory-floor device interface. The sec-
ond step is to specify the device protocol in a language
that HP DIS can compile. The third step after successful
compilation is to generate the test scripts and test the logic
of the developed interface. These steps are illustrated by
the following example.
Describing the Interface. A block diagram of the system
interfaces for this example is shown in Fig. 5. The interface
between the application and the device interface is an HP-
UX message queue. Read and write subroutines are avail-
able for the application program developer to send buffers
to the device interface and receive buffers from it. These
subroutines allow referencing either the HP-UX message
queue name or the device application name. The links
between the HP-UX message queues and the device inter-
face are established by the run-time facility through a con-
figuration file (Fig. 6). The configuration file is used by the
run-time facility to establish the queues, start the defined
interfaces, the links, and configure the ports from
the port definitions. The configuration process eliminates
the need for a detailed understandfng of HP-UX inter-
process communication and RS-232 serial port initializa-
tion.

The buffers passed through the queues must be designed
to carry the information needed by the device interface.
The device interface can require the application to pass
device-specific data directly or can translate generic func-
tions into device-specific data. Device interfaces can range
from very device dependent to completely device indepen-
dent. In the latter case more logic will be required in the
device interface.

For the sake of simplicity, this example uses the device
dependent approach. The application outbound buffer con-
tains a six-byte header and a variable-length data string.
The application inbound buffer contains a status byte and
a variablslength data string.
Specifying the Protocol. One of the methods of specifying
the protocol is a transition diagram
diagram. This
protocol into HP DIS can compile. Figs. 7a and
7b describe a diagram and a state diagram for a
nontrivial protocol. This example protocol is based on the
Allen-Bradley Data Highway I protocol, but only exempli-
fies the major features. This example assumes synchronous
communication. No new request is sent from the computer
to the factory-floor device until a previous request is satis-
fied.

The computer sends a message (MSG) to the device (Fig.
7a) and waits for an acknowledgment fromthe device (ACK).
The computer then waits for a reply message (Fig. 7b). Each
message consists of block control characters, a header, and
data. In the case of a read request, the data field from the
computer contains the address and the length of the re-
quest. The reply data from the device consists of the values
requested. In the case of a write request, the data field from
the computer contains the address and the values for the
request. The reply data from the device consists of an inter-
nal status for the request.

In the event of a communication failure, either the com-
puter or the device can reply with a failure message (NAK).
The protocol interface must also recognize that no response
(TO) is a failure. Other failure mechanisms are not taken
into account in this example.

PIDEFINITIONS

n
Appllcatlon

A

Factor-Fluor
D&ce Int.rha

FIFO
Queues O3

Fig. 5. System interfaces for HP DIS example. The queues
are HP-UX message queues.

PORTDEFINITIONS

PorLName
PoltMajor-#
PohMinor-#
BaudRate
Character-Size

Parity
StCQEi
ReafLTyp
OutputQueue
InpuLQueue

= A B
= 1;
= 4;
= 9600;
= 8;
= N;
= 1;
= 5 x 4 0 ;
= Q2;
= lx(DeviCe_ac);

QUEUEDEFINITIONS

Fig. 6. Device interface configuration file.

64 HEWLETT-PACKARD JOURNAL OCTOBER 4980

- - . _ _ -
~

Finite State Machine

The finite state machine model has been used in such diverse
disciplines as computer design, neurophysiology, linguistics, au-
tomata theory, and communications.‘ The finite state machine
model is a natural way to describe systems that process signals.
This model is particularly convenient for specifying how mes-
sages are processed in device protocols.

Two standard representations used to describe a particular
finite state machine are the state table and the state diagram.*
A state table uses one row for each state and one column for
each input. In each box are written the next state and the output.
The first row of the state table is usually assigned to the initial
state of the machine.

A state diagram is a directed graph in which each arc is labeled
with the input that causes the transition and the output that is
generated when the transition is triggered.

A classic example is a parity checker. This machine takes an
input stream of bits of ones and zeros. For each input bit the
machine produces an output indicating whether the entire input
sequence so far has even or odd parity. The state table and
diagram are shown in Fig. 1.

The HP DIS state table, written in PSL, is shown below. The
initial, or home, state is have-even. When an event is triggered by
the receipt of a 0 or 1, the protocol interface prints a message
using the user action routine called UI.

Events
zero-recd : response : 0;
oneJecd : response : 1 ;

States
have-even : Home;

State-Table
have-even : zero-recd :

Ui (“print even“)
: have-even;

have-even : one-recd :
U1 (“print odd)
: have-odd;

have-odd : zero-recd :
U1 (“print odd’)
: h a v e - e

have-odd : one-recd :
U1 (“print even”)
: have-even;

State Table

zero-recd one-recd

have-even have-even, “print even” have-odd, “prlnl odd’

have-odd have-odd, “print odd” have-even, “print even”

State Diagram

zero-recd, “print even’‘ zero recd, “print odd’
one-recd. “print odd” h

P - i r-
have-em 1

b- A -L-
one-recd, “print even”

Fig. 1. State table and state diagram for a parity checker.

ReterenWS
1 P Denniq. J Dennis, and J Qualitz. Machines, Languages, and Computation.
Prentice-Hall, 1978
2 A S Tanenbaum, Computer Networks. Second Edition. Prentlce-Hall, 1988

Figs. 7a and 7b show state diagrams derived from the
transition diagrams. The states and events form the logic
of the protocol interface. Actions (or funciions) are per-
formed at each state-event pair. Fig. 7a also shows an event
(retry exceeded] that i s not supported by the transition
diagram. This event i s added to prevent endless looping.

A message from the device to the computer (Fig. 7b) will
cause a reply message event, wh ich wou ld normally return
directly to the IDLE state. This example will check the integ-
rity of the byte stream by checking the BCC (block control

character] count and branching to an extra state (CHECK).
If the BCC count was incorrect, the original message wil l
be sent back to the devioe. If the BCC count was correct
the message from the device wi l l be returned to the appli-
cation. The combination of the IDLE state and the reply
message event is included in case the device sends a mes-
sage after time-out processing. I f this were not included,
the wrong message wou ld be extracted from the HP-UX
message queue during the next transaction. The message
from the device is simply acknowledged and ignored.

OCTOBER 1990 HEWLETT-PACKARD JOURNAL 88

State Event
IDLE Send message

IDLE Reply message

WAIT ACK

WAIT NAK

WAIT Reply message

WAIT Time-out

WAIT Retry exceeded

CHECK Message OK

CHECK Message not
OK

TSMO I
Actions List

Actions
Read message from application
Build outgoing buffer from

Send message to device.
Clearretry count.
Increment message number.
Start timer.

incoming buffer.

Read message from device.
Send acknowledgment (ACK)

to device.

Stop timer.
Read message from device.
Start timer.

Stop timer.
Read message from device.
Resend message to device.
Increment retry count.
Start timer.

Stop timer.
Read message from device.
Check block control character

(BCC)

Stop timer.
Send no response message to

application.

Stop timer.
Send communications error

message to application.

Send acknowledgment (ACK)
to device.

Send reply data to
application.

Send acknowledgment (NAK)

Increment retry count.
Set timer.

to device.

Next
WAIT

State Diagram Tm8ition Diag&m

Computer Devieo
I

Time-Out

L-.-l-
Retry Exceeded

TIDLE 1
II

IDLE

WAIT
(a)

State Diagram

WAIT

7

. IDLE A
CHECK

WAIT

IDLE

IDLE

WAIT

The state diagrams of Figs. 7a and 7b are combined into
one state diagram in Fig. 8.

The actions to be performed at each state transition are
listed in Table I. With some additional declarations this
table can be transformed into a Protocol Specification Lan-
guage (PSL) program that can be compiled. Previous deci-
sions about the form of the messages from the application
can be incorporated into the data structures.

Fig. 9 shows the PSL program ready for compiling and
testing. The compiler not only checks the program syntax,
but also tests the reachability of all states frondto the hame
[IDLE) state. This check ensures that there are no incomplete
paths.

I -""-.i
TO = The-Out

or No Response

Transition Diagram
Computer Device

TO = TimeOut
or No Response

Fig. 7. Transition and state diagrams for a nontrivialprotocol.
(a) Message from computer to device. (b) Message from
device to computer.

r

IDLE

1

WAIT

Message

: I

Fig. 8. Protocol state machine state diagram obtained by
combining Figs. 7a and 7b.

68 HEWLET-PACKARD JOURNAL OCTOBER 1990

Matching Messages

One of the most powerful features of HP DIS is the matching
process. It IS used for three purposes: for determining whether
a message matches a request event or a response event, for
parsing a message into a structure, and for delimiting streams
of characters from a port. Each use is slightly different from the
others, but they all have the same matching characteristics.

Through the PSL struct description, the user defines the fields
in a structure that are to be matched. All variables describe a
length of data. When a structure contains a variable, the data
from the message is placed into the structure according to the
length of the variable. Byte and Boolean variables are one byte
long. Integer variables are two bytes long, and real and long
variables are four bytes long. String variables can be NULL or
up to 4K bytes long. Data from the message is parsed into the
structure’s fields according to the variable lengths.

Constants and literals are matched exactly. The lengths of
data types are the same as above, but the message data must
contain the bit pattern that matches the constant. Constants or
literals adjacent to string variables are used for delimiting the
strings.

The HP DIS compiler builds a table for each structure describ-
ing data in each field. The matching process then walks this
table for each structure. If there are no string variables in a
structure, then each byte is easily assigned to a structure field.
There is no ambiguity. However, if there are any string variables
in the structure, then ambiguity branching begins, because string
variables can be NULL or up to 4K bytes long. The matching
process branches, assigning this byte to both the string variable

and to the next field. This ambiguity is resolved either by the
next constant or by the end of the message.

HP DIS makes the first shortest match, unlike the HP-UX editor
vi, which makes a first longest match. For example, if the fields
in a structure are:

variable string strl
constant byte bt1 = B
variable string str2

and the message received is:

aabbBddBd

HP DIS uses a first shortest match algorithm to parse this as:

strl = aabb

str2 = ddBd

btl = B

vi uses a first longest algorithm. The vi command typed in as:

s/ \(.Y)m(.Y)/strl =\l stR=\2/

would result in strl and sir2 matches as:

strl =aabbBdd
str2 =d

appear in several data files: ReplyAck and Reply?&& a
internal events

and variables.

eded results, the

to trigger external
or device) by creat-

description of the data
case executed by the t

Environment
R u n t i m e m e
device

constants
Read
Write
A p p l i a d - Q
npplic-wIte-Q
DeViceJead-a
D&X-WtitLQ

Increment
Stahtlmer
Stop-timer
By-me
Calculate
check
D E
STX
ETX
ACK
NAK
WRetry
NoRespon=
HP-ID
ComEtmr
StatusOK

TimeOutVal

= Devicex;
= Highway:

= 1 ;
= 2;
= 1;
= 2;
= 3;
=4;
= 1 ;
= 1;
= 2;
= 1 ;
= 1;

= 2
= 1Oh;
= M;
= 3h;
= 6h;
= 1%;
= 5;
= 201;
= a;
= 202;
= 0:

= moorim*/:

/‘ Maxnumberofretries
r Time-outreturnstatus
r Deviceidenlifer
r Rehyexceeded
r Me88agesentoK;
r returnstatus
r TOvalue = 1 s;
r test = 30s

Variabkrs
byte RetryCount = 0; r Retrycwnter
byte bcc; r Protocolblockchedtchr
byte status = 0; r ~rotocdstatus
byte dst = 10; P Pmtoccldestinalbndm
byte sw =o ; r ~rotoooi~mdevice
byte cmd = o ; r ~rotocolmmsnd
b y t e - = 0; r PIVWXWWS
integer tns = 1 ; /+ Protocolmesssgenumber
string data
byes -it; r DummybrDclO
boolean eccFbg =TRUE r ~unotionfor6~~chack
IOW Timeperiod =o; r Timervalue
strhrs Text

P Datablock - I I.

- - I I. r Bitbucket
r s b u c t u r e s u s e d t o m a t c h ~ */

stfuct ReplyAdc = (DLEACK);
struct ReplyNak = (DLENAK);
struct DataPacket = (DLESTXdstsrcand-tnsdataDLEETXbcc);
shuct ReqPacket = (dstcmddata):
sttuct Replypacket= (statusdata);

Events
r Event: vent TW, vent definition *I

sendmessage:requesl, ReqPadmi;
replymessege: response, DataPacket;
ACK response. ReplyAok;
w. response, ReptyFlak;
timeout: internal, TimePeriod >= TimecutVal;
retry-exmaM: intemaJ, FmyCmntr=MaxRetry;
msg-ok: intemal. BccF!ag==TRUE
msgndc: internal, BccFlag==FALSE

IDLE HOME; P Homestate */
states

State-table

IDLE sendmessage:
DclO(Read, Appliweaclo. ReqPacket, , , Result)/
r START Build wtg01ng buffer */
DcMove(ReqPacket.dst, DataP&et.dst)/
DcMove(HPJd, DataPa&et.src)/
DcMove(ReqPacket.and. DataP&et.and)/
DcMove(StatusOK, Datapackat.&)/
DcMove(tns, DataPacket.tns)/
DcMove(ReqPa&etda DataPacket.data)/
DcCksurn(Calcul&, DataP&eLdata, “BCCAB”, DataPacket.bcc)/
r END EWM outgoing w e r v
DcO(WtW, Devics_wMe_o, Datapadat,, , Resuit)/
-at Rebycowrt)/
Dccntr(lnCmment, tns, By_one)/
lkClock(staRfimer. TimePerlod. TimeOutVal)
:WAIT;

Dclo(Read, DevicemadB. Text., , Resuit)/
Dclo(wme, Device-WtW-Q. RepIyAtA. , , Resuit)
:IDLE

WATT: ACK:

IDLE replymessage:

~cclodt(st~p-timer, T i m e w) /
DclqRead, D e v k e d Q , Text, , , Resuit)/
DcClodr(starttimer, TimePerrod, TimeoutVal)
:WAm

WATT: NAK
D C C ~ (~ t i m e r , Timeperiod)/
DclO(Read, D e v i c e ~ ~ & Q , Text. , , Resutl)/
DclO(Wdte, Device-Write-Q, Datapacket, , , Resuit)/
DcCntr(lment, Retrycwnt, W-cW
DcCbck(Starltlmer. TimePerkd, Timeoutvsl)
:WAIT;

Dcclodt(stopflmer, Timeperiod)/
DclqRead, MAQ, Datapadcet., , Resuit)/
D c C k s u m (m DataPadcetdet, “BCCAB”, DataPadcet.bcc, &Flag)
:CHECK

WATT: tlmeout:
DcCl&(Stop-tImer, TimePw)/
DcMove(NoResponse, ReplyP&et.status)/
DclO(Write. Applic_Wme_Q, ReplyPacket, , , Result)
:IDLE;

DcCW(Stqfimer, Timeperiod)/
DcMwe(CmError, ReplyPacket.status)/
DclO(Write, Applio-wdte-Q. ReplyPadcet,, , Resuit)
:IDLE;

WATT: replymessage:

WATT: retry-exceeded:

CHECK msg&:
Dclo(wfite, Dwic~-Write-Q, ReplyAtA, I I ResuttV
DcMove(StatusoK, ReplyPacket.status)/
DcMove(DataPacket.data, Replypadret.data)/
DclO(Write, Applk-mite-a, ReplyPacket, , , Resun)
:IDLE;

Dclo(WrIte, Device-write-Q, ReplyNak, , , R e e W
Dccntr(lncrement. Retrycount, W-cne)/
DcClock(Stacttimer, TimePeriod, TimeoutVal)
:WAIT

CHECK msg-nok:

Fig. 9. PSL (Protocol Specification Language) protocol program.

Action Routines

HP DIS is shipped with a wide variety of routines to ease the
creation of protocol interfaces. If a required action routine cannot
be found in the HP DIS action routine library, the user can write
a user action routine.

A protocol interface consists of two components: a finite state
machine and its corresponding internal tables. The finite state
machine is customized for the HP DIS and user action routines.
The internal tables are: 1) an identifier table consisting of con-
stants and variables, 2) an event table consisting of event IDS
and event expressions, and 3) a state table consisting of current
state ID, event ID, action list, and next state ID tuples.

In the state table, the action list specifies HP DIS action routines
or user action routines. Action routines operate on the variables
in the identifier table. HP DIS provides a header file, DcTypes.h,
which can be used by user action routines written in the C pro-
gramming language to simplify parameter passing.

The HP DIS-supplied action routines are listed below

DcBufMod
DcCksum
DcClock
DcCntr
DcConvert
DcDelay
DcEncode
DcExit
DcFlag
DclO
DcLogAdAB
DcMove
DcScan
DcTablnit

Buffer modification
Checksumming
Timer
Counter
Data conversion
Delay
Data encoding
Terminating the protocol interface
Flag setting
InpuVoutput
Address builder
Move
Data scanning
Table initialization

DcTabScan Table scanning
DcBufMod Buffer modification

An Example
The HP DIS action routine DcClock activates or deactivates a

time counting facility. Timer counters are caller-supplied HP DIS
variables. The HP-UX system interval timer ITIMERREAL is used
to update the time counters in real time. A SIGALRM signal is
delivered when the system interval timer ITIMERREAL expires,
and all active timer counters are updated. Updating a time
counter can trigger an event if the timer counter exceeds a
specified time-out value. In the following example the event Time-
Out is triggered when time-counter is greater than 60000 (60 sec-
onds).

Variables

Events

State-Table

long time-counter;

TimeOut : internal, time-counter >

...

...
DcClock(1, time-counter, 1000)
...
...
Idle : TimeOut :
DcClock(2, time-counter)
: Idle;

...

...

6oooO;

i' Start time counting ' i

i' Time-outdetected '/
i' Stoptimecounting ' i

messages, state-event pairs, and values of a l l variables after
every action associated with each state-event pair. The vari-
able values are useful for checking the results of actions
even when the correct path is executed.

This example has shown that by using tools and a subsys-
tem approach, a factory-floor device protocol can be mod-
eled and produced.

Configurations
Fig. 15 shows various configurations for HP DIS-built

interfaces. Interface schemes can use a single protocol in-
terface or mult ip le protocol interfaces. These protocol in-
terfaces can be stacked in series or configured in parallel.
When mult ip le devices are serviced, even more choices
can be made: each device can be serviced by i t s o w n dedi-
cated protocol interface, or mult ip le devices can be ser-
viced by a generalized protocol interface.

Fig. 15a shows the simplest configuration. Here, one pro-
tocol interface handles one port and one device.

Fig. 15b shows three protocol interfaces that work to-
gether. Message processing that i s common to a l l ports i s
done in the lower-level PI1. The message is passed to the
upper-level PI2 and PI3 for device-specific processing. For
example, PI1 can collect a l l messages from mult ip le de-

r Time-Stamp: 608506312 */
r Run-Time Name
RuntimeName Devices

State Table File Name */
/usersitesVDevices.st;

r CASE 1 ; */
/* Gwd */
r state Command */
r IDLE
/' Endof- */

WURA w12wx) '; */

r ECASE IDLE WAIT sendmessage; *I

r CASEP; */
r oood *I
/* state Command */
1. IDLE
r uK)1\020\003UXM'; */

WLRA 1 M 0 \ 0 0 2 1 0 1 2 * /

r EM~~CZSSV
r ECASE IDLE IME replymessage; */

CASE 3:
r stete Command */
IDLE WURA 1012wx)';
WAIT WLRA .v2owo6';
r EM of cas^ */
ECASE WAIT WAIT ACK

CASE 4;
r s m Command */
IDLE WURA U)12\M)o';
WAIT WLRA WZCWJ25';

ECASE WAIT WAIT NAK;
r EM of - *I

Fig. 10. Action command file.

I

Q5
HP-UX Message

Queues L Q 4

Factory-Floor
hvlco lnterfac

Device
Simulator

WLRA

I I = I Q* "7 4
HP-UX Message

Queues

Fig. 11. Testing interfaces.

vices, perform checksums, and pass them to the next level.
This ensures that all messages are acknowledged promptly
by a dedicated protocol interface, while less time-critical
functions are handled by separate protocol interfaces.

Fig. 15c shows three protocol interfaces, each dedicated
to a port. Device-specific message processing is done for
each port. The upper-level PI4 directs and organizes mes-
sages before passing them up to the application.

A developer can choose where to put common functions.
The performance will be slightly better when the number
of protocol interfaces in serial is smaller, since fewer mes-
sages are passed between processes. On the other hand, a
centralized function may be desirable because it simplifies
the system design.

Performance
An HP DIS system is easier to construct than a similar

application in C code, but this is achieved with some loss
of performance compared to C code. In an HP DIS system,
functionality is split across five (or more) separate HP-UX
processes. In C code, all the functionality could reside in
a single process. For example, HP DIS port management is
handled by separate read and write port processes with

PI-DEFINITIONS

RuntimeName = Devicaac;
Runtime-Typa = T;

Runtime-Name = PMDPSS;
Runtime_File_Name = /usr/bin/PMDPSS; /* Device Simulator */
Runtime-Typa = T;

QUEUEDEFINITIONS
QueueName = ai ,az,~3,~4,05;
Queuelink
05 > Wiac;
Wiac > a3;
04 < Devicax;
~ e v i ~ < az;
PMDPSS < Q3;
PMDPSS > (22;

ai PMDPSS;

Fig. 12. Test configuration file.

70 HEWW-PACKARO JOURNAL OCTOBER 1990

ExeartionNumkw: 1 Caae-Number: 1

Status: Cwes identical In file Devices.tr and file
Dcwice_ac.da

Event Path taken and Case Statua in flk Devicax.tr:
[I D L E s e n d _ m e s s e g e , D I O ~ ~ : ~ ~ ; D C ~ V E ~ M O ~ : D C ~ V E ;
D C M 0 V E D C C K S U M ; D C I O D C A M) V E ; D C C ~ R ~ ~ W ~ ~
Caea-SfatUs: 0

Event Path taken and Case status in flk Devicex.da:
[I D L E : s e n d _ m e s s e g e , D l O ~ V E ; D C M O V E ; D ~ V E D C ~ ~ ~ M O V E ;
DCMOM,DCCKSUM;DCIO;DCMOVE;DCCNTRDCCL~K;WA~
case_status: 0

EXewtbnNumber: 1 CaseNumber: 2

Status: Caseg identical in file DeviCe_ac.tr and file
Deviceac.da

Event Path taken and Case Status in file Deviis.tr :
[l D L E m p l y ~ , ~ c K) : D C I O ; I D L E l
casestatus: 0

Event Path taken and Case Status in Lle Devicaxda:
[I D L E r e p i y ~ , D C l O ; D l O i D ~
Caae-status: 0

Fig. 13. Comparison results file.

EX-1
CaeaNumkw: 1
RuntimeName: Devicex
TraceDataAvailabk
Actim- WUFiA
PmtoodMesoaee_T~~Elapsed-Tlm: Thu Apr 13 1 4 3 3 : ~ 1889
P m t o c o ~ e D a t a P & e t : W O ~ X 0 1 2 W X 1 '
Status: Triggered
State: IDLE
Event: sendmessage
Variable_RetrievalElapsed-Tirne: Thu Apr 13 14:33:90 1889
State-Table-Variables:
ReplyPscket.data = ' '
ReplyP&et.status = 0
FleqPa&t.data = ' '
R6qPaoketd = 0
R e q w d s t = 10
DataPacket.boc = 0
Detaplldcet.data =
DataP&et.tns = 1
Datamet.sts = 0
DataPacket.and = 0
0ataPacket.src = 0
DataPad&.dst = 10
Text = * '

@€&lag = True
Result = 0
data = '
tns = 1
StS-0
d = O
src = 0
dst = 10
statUS=O
h = O
SYSSRR = 0
Status: T-ed
State: IDLE
Event: sendmessage
Action: DClO
Variable_RetrievaLElapsabTime: Thu Apr 13 1433:30 1989
State-Table-V~es:
ReplyPacket.data = ' '
ReplyPacket.atatus = 0

T i m e p w = o

Fig. 14. Trace data output file.

I

- .
connected HP-UX message queues. HP DIS handles the
message buffering. This decreases development time since

E 5 2000--

+ f

--
-I

2Ports ----* -- --- /-----

/'

pplicatior

0

Rg. 15. Configurations for HP DIS-built interfaces. (a) One
protocol interface handles one port and one device. (b) Three
protocol interfaces work together. (c) Three protocol inter-
faces, each dedicated to a port, with an upper-level interface
(Pl4) directing and organizing messages.

process will be preempted. HP DIS uses this HP-UX exten-
sion. With real-time HP DIS processes, response time vari-
ability can be decreased.

Performance Test Results
HP DIS performance studies were conducted to answer

these questions:
What is the performance on HP 9000 Series 300 and
Series 800 computers?

m What is the throughput of an HP DIS interface?
The flexibility of HP DIS allows device interface modules

to be configured and combined in an infinite number of
ways. A simple model was chosen that gives representative
data involving the major items contributing to performance.
Fig. 16 depicts a typical configuration. An application
(PModel) is connected to a device interface module (PIl),
which is connected to an HP-UX RS-232 multiplexer port.
The port has a physical loopback connection and all data
written to the port is immediately read back from the port.
Each port has one PModel. A fixed-length message is sent
to the port by a PModel and returned unchanged. Because
the application program waits for each message to return
before sending another, only one message is in the loop at
a time per PModel. Throughput data is averaged over 20
transmissions for various message lengths using one, then

3000

T

Loopback Por;s\l.

Fig. 18. HP DIS performance test model for multiple ports.
PModel is a simulated HP DIS application.

z 2 0 0 0 p R

,
9 e
f lo00

8
m c

0

0 1000 2000 3000
Message Length (Bytes)

Fig. 17. Loopback response time for performance tests using
the HP DIS application PModel on (a) HP 9000 Model 375
and (b) HP 9000 Model 832 computers (HP DIS 2.2 on HP-UX
7.0).

OCTOBER 1990 HEWLETT-PACKARD JOURNAL 71

i b .~ ' W@fW.HPARCHIVE.COM
L.2 . _-e._-,

two PModels.
Fig. 17 shows the data throughput of an Hp 9000 Model

375 and an HP 9000 Model 832, both with 16M bytes of
memory, under the HP-UX 7.0 operating system. The
throughput in Fig. 17 reflects the transfer of data one-way.
The curves show the data throughput for one PModel and
the sum of the data throughputs for two PModels.

The throughput decreases with message sizes above 1000
to 1500 bytes because HP DIS is performing message match-
ing (see “Matching Messages,” page 67). HP DIS matches
raw byte streams to the user’s definition of the message.

Summary
The Hewlett-Packard Device Interface System, HP DIS,

is a tool that eases the development of communication
links between computers and factory-floor devices. Inter-
faces can be developed more quickly than with conven-
tional code. Devices can be simulated, and testing is mostly
automated. Communication links can be scaled, using only
the routines needed for the application at hand. Through
the use of this tool, factory-floor devices from many vendors
can be mixed and matched.

HP DIS can improve productivity, reiiability, develop-
ment costs, and market response and reduce support costs
for device interfaces.

Acknowledgments
HP DIS was made possible by the teamwork and dedica-

tion of many people, especially the R&D team. The authors
would like to acknowledge the other present team mem-
bers-Frank Leong and Marve Watkins-and Ron Becker,
the project manager, who pulled it all together. We also
would like to acknowledge previous team memberszle-
men Jue for the development environment, David Bruns-
tein and Tom Hirata for the testing environment, and Wes
Higaki who was one of the initial investigators. Dan Shive
and Ron Short of the technical support group made the
manuals a reality. The authors also acknowledge all the
contractors, technical writers, marketing people, and man-
agers without whom HP DIS could not exist.

References
1. F. Litman, “Software Tools for Plant-Floor Connectivity,” Auto-
mation, Vol. 35, no. 4, April 1988, p. 28.
2. Hewlett-Packard Journal, August 1990, pp. 6-60.
3. C. Jue, “A System to Develop Factory Floor Device Interfaces,”
Proceedings of the Third International IMS Conference, Vol. 3,
part 1, September 1987, pp. 134-146.

72 HEWLETT-PACKARD JOURNAL OCTOBER 1890

WWW.HPARCHIVE.COM

Measurement of R, L, and C Paraml- --rs in
VLSI Packages
Developed to verify the electrical models of a 408-lead
multilayer ceramic package, this measurement technique
can measure the very small inductances, capacitances,
and resistances that are typical of high-performance
packages. It does not require extraction of RLCparameters
from time-domain reflectometer measurements.

by David W. Quint, Asad Aziz, Ravi Kaw, and Frank J. Perezalonso

HE NEED FOR HIGH-PERFORMANCE, high-pin-
count IC packaging with a large number of VO con- T nections has brought about a project to design and

characterize a multilayer ceramic PGA (pin-grid array) ca-
pable of providing up to 320 I/O lines at an operational
frequency in excess of 60 MHz. Our challenge is to produce
a package that brings the performance advantages of mul-
tilayer cofired ceramic technology to high-lead-count, high-
power VLSI circuits. The package currently in development
will mount a 14-mm-square CMOS chip.

Fig. 1 is a cross-sectional drawing of the package. The
package contains 1 2 metallization layers, which are used
for signal, power, and ground routing, and uses three-tier
bonding from the chip to the bonding pads on the package.
The top two bonding tiers on the package are exclusively
for signal or VO connections. The bottom bonding tier is
reserved for power supply and ground connections. The
signal routing layers provide a stripline environment and
there is a ground plane adjacent to each of the power supply
planes.

The pads on the chip are spaced at an effective pitch of
approximately 110 micrometers (0.00433 inch). We have
been able to match this pitch on the package by using two
signal bonding tiers. Power supply connections are divided
into eight groups for flexibility and noise isolation. The

Bottom Bonding Tier

Middle Bonding Tier

Top Bonding Tier

Dielectric Laver 1 (TL - 1) 1

I n Slug

chip mounts directly on a copper-tungsten heat spreader
that is used for heat dissipation. The heat spreader is also
connected to ground.

Electrical Modeling
The designers of system processing units put considera-

ble effort into system simulations. One of their main con-
cerns is the amount of noise induced on logic VDD (logic
VDD powers the internal circuitry of the IC) and logic GND
(ground). Another concern is noise on signal lines. Noise
is caused by power and ground bounce* and by coupling
of signals from one line to another. The main source of this
noise is the familiar Ldi/dt term, which arises from logic
and VO driver currents flowing in the inductance of the
package and circuit board conductors. To produce mean-
ingful simulations, it is necessary to include models of all
these components in the circuits. The simulations are par-
ticularly sensitive to the IC package model, since the pack-
age lead inductance accounts for most of the inductance L
in the Ldi/dt term for computing power supply bounce.
The values of the power supply inductances that need to
be added in the simulations range from about 70 picohen-
ries to about 0.5 nanohenry. In addition, ground models
"'Bounce" in ground and power supplies refers to a temporary droop or rise in the supply
voltage caused by large currents drawn by devices using the supplies

GND Plane

GND Plane
Signals
GND Plane
V,, Plane
VDL Plane

V,, Plane
V,, Plane

Dielectric Layer 2 (TL-2) :l:k:Bars -3-4 Dielectric Layer 3 (TL - 3)
Dielectric Layer 4 (TL - 4)
Dielectric Layer 5 (TL - 5)
Dielectric Layer 6 (TL-6)
Dielectric Layer 7 (TL - 7)
Dielectric Layer 8 (TL - 8)
Dielectric Layer 9 (TL-9)
Dielectric Layer 10 (TL-IO)

GND Plane

Dielectric Layer 11 (TL - 11) 1 GND Plane ---
Bypass Bypass

Capacitor Capacitor

Fig. 1. PGA (pin-grid array) con-
struction detail (not to scale). All
dielectric layers are 0.008 inch
thick.

i

WWW. HPARCHiVE.COM

and signal trace models including cross coupling need to
be included in the system simulations.

Model Verification
Creation of electrical models for the PGA was facilitated

by various software tools and by leveraging previous work
done on the subject. Verifying that these models were cor-
rect was much more challenging and is the main topic of
this paper. Models were verified by comparing package
parameters calculated from the models with measurements
on an actual PGA package.

Most high-frequency measurements are done using a net-
work analyzer or a time-domain reflectometer (TIIR). Both
instruments measure reflections from discontinuities. The
problem with using a TDR lies in the interpretation of the
results when the time delay through a discontinuity is short
compared with the rise time of the propagating pulse. The
PGA package signal leads consist of stripline transmission
lines with a signal propagation time between 100 and 200
picoseconds and a characteristic impedance of approxi-
mately 37 ohms. Considering the time delay through the
package, a TDR pulse with a rise time of about 20 pico-
seconds is necessary to give good resolution. Using such
a fast rise time, skin effect, dielectric losses, and reflections
from the test fixture and interconnections distort the reflec-
tion test signals to such a degree that it is virtually impos-
sible to extract an RLC circuit for the package itself. A TDR
measurement also does not give numbers for first-order
and second-order mutual inductances and capacitances be-
tween signal lines. TDRs are especially unsuitable for the
power supply planes because of the extremely low charac-
teristic impedances of these planes (5Q or less). A TDR
does not have the ability to drive such a low-impedance load.

Since simulations are done with the Hp Spice software
package using models made up of discrete R, L, and C
elements, these are the parameters that need to be verified.
Because TDR or direct measurements with an impedance
analyzer cannot give this kind of detail, it was deemed
necessary to develop another measurement technique,
which is described in the following sections.

Caprrchnce Measurement
A typical PGA signal trace structure, including the signal

wirebond and the PGA pin, is modeled in the passive cir-
cuit of Fig. 2. This is a useful model for HP Spice simula-
tions. It can also be approximated in the form of transmis-

sion lines with 2, = and propagation time
t = a. The transmission line approach is more dif-
ficult to apply when the mutual coupling and resistive
losses are important. This is the case in any IC package
where a number of YO lines and internal circuits are
switching simultaneously. The RLC equivalent is applica-
ble to any circuit where the time delay of the element is
less than about half the shortest rise time of the propagating
signal. In the case of pin-grid array packages, the odd
geometry gives the device non-TEM properties; for exam-
ple, the capacitive and inductive coupling coefficients are
not equal.

To overcome the shortcomings of traditional measure-
ment techniques, the following method is used. The R, L,
and C values in Fig. 2 are measured using slightly different
electrical circuits. The only source used is a ramp generator
and the only detector used is an oscilloscope with a
matched 50Q input impedance. Fig. 3 illustrates the mea-
surement of a capacitance such as the coupling capacitance
between the two traces. The use of a ramped input signal
cancels effects of circuit elements that are not under test
and aids in the interpretation of results. The charging cur-
rent i(t) defines the voltage across the oscilloscope's chan-
nel 2 inputs and the unknown capacitance Cx can be calcu-
lated from

where voltage is measured at the center time of the V,
ramp.

The voltage V,, is small, but its accurate measurement
is important to the determination of the parameter values.
The measurements that must be taken on the oscilloscope
screen are the slope of the Vi, ramp (dVi,/dt) and V,,
the plateau voltage on Vout. Matched coaxial cables be-
tween the instruments and the device under test introduce
time delays, but do not introduce any additional factors in
the equation for C, above. For example, losses in the coaxial
cables from the sample to the oscilloscope will introduce
no error if they are the same length for both channels, since
the measurement depends on the quotient of the measured
voltages. The voltage drops across the series resistance and
inductance in the trace are small, since they are in series
with the capacitive impedance. The capacitive impedance
dominates the current, so the resistive and inductive volt-

Wirebond PGA Trace I -1 1.2 pF

Plating Stub PGA Pin I I
GND2

PGA 3.2nH 50mn
Pad

2.9 nH 100mR NodeT2

I 3.1 pF I
Node Eo Z N D 3

NodeT; ~~ r T 3

0.30 pF 0.30 pF Node T4

Fig. 2. Passive circuit model of a
typical PGA signal trace structure,
showing typical trace parameters.
Nodes T3 and T4 are correspond-
ing nodes on the adjacent signal
trace for capacitive coupling. In-
ductive coupling is not includ@d
in this model.

ages can be ignored. In addition, the capacitive loading on
the Vout side is of little consequence, because the voltage
being measured (the plateau top) is essentially constant.
The capacitance on the V,,, side will drop out of the mea-
surement equation if the time constant CoutRscope2 is much
less than the test pulse rise time.

C, can be measured quite easily at several pulse rise
times, and the calculated values of C, can be compared for
the different measurements. The longest pulses will give
smaller plateau voltages, increasing the importance of the
signal-to-noise ratio of the equipment, while the shorter
pulses will cause the measurement to depart from its true
value in a systematic way as the parasitics in the test jig
become more dominant. In the PGA and other common
packages, there is usually a wide range of pulse rise times
that give the same answer for the value of the tested ele-
ment.

In this and all the other test situations, the test jig param-
eters must be measured without the package and subtracted
from the values obtained with the package in place. The
design of the test jig is important and must include
matched-impedance lines with connections as close as pos-
sible to the PGA to minimize the parasitics of the test jig.
Good ground integrity is important, since large parasitics
can be introduced quite easily. Poor connections are easily
found using the real-time display of the oscilloscope. Move-
ment of a poor connection will produce corresponding
wiggling of the oscilloscope trace and a poor connection
can usually be located quickly and corrected. Once the test
jig and cabling are connected properly, movement of the
cables should produce no noticeable movement of the os-
cilloscope traces. This troubleshooting ability is another
benefit of this technique.

Inductance Measurement
Inductances are measured by applying ramped currents

instead of ramped voltages to the traces under test. This is
arranged by shorting the wirebonds of the PGA traces to
the PGA ground circuit. This circuit is shown in Fig. 4.

T L
--

Time (ns)

Fig. 3. Capacitance measurement circuit and voltage wave-
forms.

The input impedance of the signal trace, represented by
L, in series with R,, is low compared with the effective
source impedance of the generator and the oscilloscope in
parallel ($enllRscope), so the input current is determined
solely by the test equipment connected to the circuit. Thus,
current I(t) = Vgen(t)Rgen, since the package under test is
virtually a short circuit. Virtually all of the current from
the ramp generator flows through the package trace, so the
voltage Vout is determined solely by the trace inductance
and resistance. Again, if the rise time of Vge, is much greater
than the time constant of the generator and package induc-
tance, the voltage across the package quickly becomes
Vout = L,dI/dt + R,I. The output pulse consists of the sum
of two components: (1) a flat-topped pulse like the one in
the capacitance measurement, and (2) a ramp proportional
to the input current. If we separate the two voltages in Fig.
4, call the inductive voltage V,,, represented by the plateau
voltage, and call the resistive voltage V,, the final voltages
after the ramp can be found from:

(3)

where dVge,/dt is the slope of the ramp voltage and Vgenrnax
is the final voltage of the V,, step (see Fig. 4).

The bounce caused by the partial inductance of the PGA
ground net can be canceled by driving a third (uncoupled)
signal trace, grounded to the shield at the inner lead bond,
with a negative-going ramp of the same magnitude. The
third lead must be uncoupled so that mutual inductance
does not contribute unwanted voltages to the measurement.

Test Fixture and Parasltics
For each of the parameters that we measured (inductance,

capacitance, mutual inductance, and mutual capacitance)
we had to build a different set of probes. The parasitics of

1:
Vssn

T

0 10 20 30 40 50
Time (ns)

Flg. 4. Inductance measurement circuit and voltage wave-
forms.

OCTOBER 1940 HEWLETT-PACKARD JOURNAL 75

WWW. H PARCH 1VE.COM .!

d after each measure-
ristics of the probes

cially important in thecase of the power supply inductance
measurements because the characteristics of the probes
were comparable in magnitude to those of the package.

Signal Models
Signal trace models were calculated using Stripcal' to

calculate the lumped elements in the trace model between
the PGA bond pad and the base of the pin. Ind3' was used
to calculate the inductances (both self and mutual) for the
wirebonds. The measurements were done on a 408-pin
PGA that had a test chip mounted and bonded in it. For
the inductance measurements, all the wirebonds were
shorted together on the chip. For the capacitance measure-
ments, all the signal wirebonds were isolated.

Resistance measurements are not discussed in detail be-
cause they are straightforward and because the measured
values of the tungsten metallization sheet resistance were
between 5 and 7 milliohmshquare, well below the maxi-
mum specification of 13 milliohms/square. In addition, the
resistance of the ground and power supply routing was
less than 5 milliohms, which was not considered signifi-
cant.

The inductance measurement results were as follows:

Parameter Measured Calculated Difference
Self L (upper tier) 15.lnH 15.2nH 1%
Self L (middle tier) 14.9nH 14.6nH Z Y O

MutualL(uppertier) 4.7nH 4.5nH 4%
WB coupling (1st order) 2.0 nH 2.1 nH 5%
WB coupling (2nd order) 1.4 nH 1.5 nH 7%

Mutual L (middle tier) 3.64 nH 3.21 nH 12%

Note: WJ3 = wirebond.

The sources of error for the signal inductance parameters
are: (1) the routing on the chip, (2) variations in the length
and the shape of the wirebonds and traces, and (3) imper-
fections in the ground planes.

The capacitance measurement results were as follows:

Parameter Measured Calculated Difference
Self C (upper tier) 10.1pF 9.5pF 6%

Mutual C (upper tier) 0.7pF 0.5pF 29%
Self C (middle tier) 6.5pF 6.3pF 3%

Mutual C (middle tier) 0.6 pF 0.5 pF 17%

The sources of error in the signal capacitance measure-
ments are: (1) the capacitance of the pin braze pads, and
(2) the capacitance of the vias and the associated cover
dots. The capacitance between the wirebonds and between
the pins was found to be less than 0.1 pF and has been
ignored.

Power Supply Models

signal traces. The results were as follows:
The measurements were done in the same way as for the

76 HMILETT-PACKARD JOURNAL OCTOBER 1990

Parameter Measured Calculated Difference
Self L of VDD 97pH 79pH 19%
Self L of VDL (group 1) 0.88 nH 0.77 nH 14%
SelfLofVDL(group2) 1.18nH 1.06nH 11%

Self C of VDL (group 1) 0.66 nF 0.62 nF 6%
Self C of VDL (group 2) 0.5 nF 0.47 nF 6%

Self C of VDD 4.96nF 4.92nF 1%

Note: VDD is the logic power supply voltage and VDL is the
YO driver supply voltage.

VDD Measurement Errors
In the VDD inductance measurements, the topology forced

us to put all eight ground wirebonds on the same side of
the VDD wirebonds instead of four on each side as the chips
are actually bonded. Moving all the ground wirebonds to
one side of the VDD wirebonds may increase the inductance
of the wirebonds by up to 50%. This effect accounts for
most of the difference between the calculated and measured
values of the VDD inductance. Fig. 5 compares the measure-
ment bonding pattern and the pattern the package was
designed to use in actual operation. Another source of error
is the shape (loop height, length, etc.) of the wirebonds.
The wirebond shape may be turn out to be different from
the one that was analyzed.

Chip

Package

Chip

Package

Fig. 5. To measure VDD inductance, it was necessaty to put
all eight GND wirebonds on the same side of the VDD
wirebonds, as shown in (b). In actual service, the wirebond
pattern is as shown in (a). This accounts for most of the
difference between the measured and calculated values.

VDL Measurement Errors
The wirebonding pattern may vary in the VDL bonds. In

the calculations for the VDL inductance, we also did not
take into account the inductance of the epoxy routing on
the chip.

The power trace capacitance measurements were done
without the bypass capacitors because the 0.1-pF nominal
value of the bypass capacitor is very large compared to the
capacitance parameter that we were trying to measure. A
very high degree of correlation was obtained between mea-
surements and calculations.

Conclusions
It is important to be able to verify electrical models of

packages used in high-performance systems. Time-domain
reflectometry cannot give the kind of detail needed for
model verification, and it is very difficult to derive an RLC
circuit from the results.

The measurement technique described in this paper3
overcomes the problems associated with TDR measure-
ments. Inductance is measured while capacitance is
shorted out, and capacitance is measured on open-circuit
traces so inductive effects are negligible. Slow rise times
of input voltage pulses make it possible to avoid transmis-
sion line effects. A feature of this method is that the mea-
surements can be made with readily available digital oscil-
loscopes and pulse generators.

Good correlation between the calculated and measured
results for the PGA package was obtained. This measure-
ment technique has also been used to measure parameters
of TAB (tape automated bonding) packages, printed circuit
PGAs, and printed circuit board connectors with good re-
sults, and could also be useful in other electrical model
verification experiments.

Acknowledgments
We would like to thank Ken Lee and Ralph Liu, who

assisted with this effort and provided invaluable ideas and
advice. We would also like to thank Bob Crawford and Ron
Bernard for designing the probes and writing the software
for the measurements, and Pauline Prather for her support
and expertise in bonding and assembling the test devices.
Colorado IC Division assembly, particularly Dave Gilzean,
helped wholeheartedly to make this effort possible.

References
1. Stripcal is a program developed by Dave Quint, Hewlett-Pack-
ard Colorado Integrated Circuits Division. It uses transmission line
analytical equations to calculate R, L, and C values.
2. Ind3 is a program developed by Ken Lee, Hewlett-Packard Cir-
cuit Technology Group, It uses the method described in A.E.
Ruehli, “Inductance Calculations in a Complex Integrated Circuit
Environment,” IBM Journal of Research and Development, Sep-
tember 1972, pp. 470-481.
3. D.W. Quint, G.L. Brown, and R. Kaw, “Measurement of R, L,
and C Parameters in VLSI Packages,” Proceedings of the 1988
Design Technology Conference, Hewlett-Packard Company, pp.

Additional information can be found in:
4. D.W. Quint and Asad Aziz, “Electrical Design Methodology of
a 407-pin Multilayer Ceramic Package,” Proceedings of the 1989
Electronic Components Conference, Hewlett-Packard Company,

5. F. Perezalonso, B. Crawford, R. Kaw, and R. Bernard, “Investi-
gation of R, L, and C Measurement Techniques for VLSI Packages,”
Hewlett-Packard Company, September 1988. Published as “Elec-
trical Characteristics of VLSI Packages,” Proceedings of the 1989
Design Technology Conference, Hewlett-Packard Company, pp.
110-119.

324-331.

pp. 392-398.

OCTOBER two HEWLEIT-PACKARD JOUWL 77

WWW. H PARCHIVE.COM

Statistical Circuit Simulation of a
Wideband Amplifier: A Case Study in
Design for Manufacturability
Statistical variations of integrated circuit parameters are
often correlated, not independent. Examples are side-by-
side resistor values and matched transistor gains.
Accounting for these correlations using principal
component analysis can make statistical simulation an
accurate predictor of manufacturing data.

by Chee K. Chow

N INTEGRATED ClRCUIT DESIGN, there is a need for
statistical circuit simulation that can accurately project I circuit performance distributions in manufacturing.

There are two reasons for this need. First, being able to
project the performance distributions precisely in the de-
sign phase enhances the chance of a first-pass success.
Thus, the cycle time from the design phase to manufactur-
ing release can be significantly reduced. Second, simula-
tion can serve as a diagnostic tool to identify hidden process
problems. For example, large discrepancies between the
simulated and manufactured distributions frequently indi-
cate process anomalies not previously discovered.

A simple approach to statistical circuit simulation is to
perform a large number of Monte Carlo simulations.' The
inputs to these simulations are computer-generated ran-
dom circuit parameters based on the means and standard
deviations of the circuit elements extracted from the man-
ufacturing data. A significant drawback of this approach
is that it does not account for the highly correlated nature
of the device parameters within an integrated circuit die
and also among dice. Consequently, it rarely gives accurate
predictions.

In integrated circuits, device parameter variations are
separable into two types. Variations across many dice, waf-
ers, or fabrication lots are random in nature, while those
within a die are highly correlated. Examples of the latter
type are the side-by-side layouts of resistors and matched
transistor pairs. At present, commercially available circuit
simulators do not address these intercorrelations, so they
do not provide the information needed.

This article describes a circuit simulator study that ac-
counts for both the intradie device correlations and the
lot-to-lot random variations. The technique used is based
on principal component analysis, a branch of multivariate
statistics. Examples are presented showing the application
of this technique to a custom wideband bipolar amplifier
IC used in the HP 54503A digitizing oscilloscope. The tech-
nique was used to set an accurate specification early in the
design stage and to identify a process problem affecting
the circuit performance.

Principal Component Analysls
Consider an integrated circuit having n parameters such

as resistor values and transistor gains. These parameters
vary statistically from lot to lot, from wafer to wafer, and
from die to die because of the time and spatial variations
of the fabrication process. The manufacturing distributions
for this IC can be simulated if an ensemble of n-variable
vectors can be generated having the same statistical vari-
ation as the circuit parameters. The accuracy of these simu-
lations depends to a large extent on how accurately the
intercorrelations of the n variables are accounted for.

The n-variable vectors can be generated by multivariate
statistical starting from the correlation ma-
trix of the n variables. Multivariate statistics analyzes the
structure of complex statistical variables to identify latent
factors (factor analysis) or the principal components (prin-
cipal component analysis). A comprehensive treatment of
this subject can be found in the literature.2i3 Multivariate
statistics has been used extensively by behavioral scientists
to analyze latent factors responsible for certain behavior
traits. Its applications to manufacturing problems, based
on our literature survey, have been very limited.4s5*6*7

One method of solving for the ensemble of n-variable
vectors is based on principal component analysis tech-
niques. Briefly, principal component analysis describes the
variances of the n random variables in terms of a set of
mutually orthogonal or statistically independent (uncorre-
lated) variables known as principal components. Each prin-
cipal component accounts for a portion of the total variance
larger than the succeeding components. Statistical ensem-
bles of the n variables can be readily generated from random
numbers after the transformation to the principal compo-
nents because of the statistical independence of the princi-
pal components.

The ensemble of n-variable vectors is generated in a
closed-form solution starting from the n-variable correla-
tion matrix R, provided that the eigenvalues of R are all
positive and the variables are normally distributed. For a
set of n circuit variables, yl, y,, ..., y, having a correlation
matrix R, it can be shown that the ith statistical variable

t8 HEWLETT-F'ACKARD JOURNAL OCTOBER 1990

WWW.HPARCHIVE.COM

yi is given by the e x p r e s ~ i o n : ~ ~ ~

35

30

25

20

15

lo --

5

0

High-Frequency
output

-

--

--

--

--

--

--

yi = (?AYyijxj) ui + pi

where xl, x2, ..., x, are normally and independently distrib-
uted random variables (the principal components). The
values for the xi in equation 1 are chosen randomly and
independently. This is possible because the xi are statisti-
cally independent.

The Ai in equation 1 are the eigenvalues of R. The pi and
ui are the mean and standard deviation of the ith variable.
yij is the jth component of the ith eigenvector of R. The
statistical measures for these variables are obtained from
volume manufacturing data.

Circuit Simulation Algorlthm
A circuit simulator" was written in C and HP-UX scripts.

It runs on an HP 9000 Series 370 workstation. The algorithm
of this program is shown in Fig. 1. It consists of three
modules: . A statistical analysis package performs all the computa-

tions according to equation I. . A parser retrieves these correlated vectors and generates
the HP Spice text files. . HP Spice performs the simulations.
The user is required to input three pieces of information:

(1) the HP Spice text file, (2) the correlation matrix of the
circuit variables, and (3) the means and standard deviations
of the circuit variables. Data for (2) and (3) has been com-
piled from volume production measurements for many HP
fabrication processes.

The confidence limits of the simulated distributions vary
as the square root of the number of simulations.' Based on
numerous case studies, about 100 simulations are adequate
to project a 95% confidence limit, even for a fairly complex
system. Although these Monte Carlo simulations are com-
putationally intensive, with the emergence of widely avail-
able high-performance workstation-class computers, they
can be routinely performed. A typical Zoo-sample simula-

Statistical

iP Spice Text
lie GeneratIan

HP Spice - HP Splce
Text Film ' 1 Simulator HPSplce I

/

Statistic-,
Package

Data Anslysls I

Fig. 1. Statistical circuit simulation algorithm.

I 1

L
Input -

Voltage

1 Transconductanc

-Gain
Stage

Fig. 2. Simulation was used to set the minimum gain specifi-
cation for this programmable gain circuit portion of an inte-
grated amplifier IC.

tion takes 149 seconds on an HP 9000 Model 370 worksta-
tion.

Case Study
The merits of this statistical circuit simulator are illus-

trated by two applications during the manufacturing re-
lease of a custom high-speed integrated circuit.

The circuit is an integrated amplifier fabricated using
the HP5 process, a 5-GHz fT oxide isolation process. The
IC is used in the HP 54503A low-cost, high-performance
digitizing oscilloscope. This custom IC is the heart of an
amplifiedattenuator assembly that accurately reproduces
signals from dc to 500 MHz and from 40 mV to 40V with
ac or dc coupling and a constant output dynamic range of
500 mV. The IC consists of nine functional blocks. On-chip

-I
1.30 1.35 1.40 1.45 1 .so 1.55

Minimum Amplifier Gain

Fig. 3. The distribution of the minimum gain from 220 corre-
lated simulations has a mean of 1.44 and a standard deviation
of 0.04. It predicts a minimum gain specification of 1.33 to
1.57.

OCTOBER 1990 HEWLETT-PACKARD JOURNAL 79
c

WWW. H PARCHiVE.COM

registers can program the gain from 1.5 to 12.5 in 3% incre-
ments.

Projection of Manufacturing Specifications
In the manufacturing release of this IC, no reliable data

was available to set the minimum gain specification (1.5
nominal) of the programmable gain circuitry shown in Fig.
2. This gain cell can be programmed to amplify small sig-
nals with a nominal gain of 1.5 to 12.5.

An inaccurate specification on the minimum gain would
cause high parametric yield loss. The statistical simulation
techniques described previously were carried out to project
the gain distribution in a real-life manufacturing environ-
ment. For these simulations, 36 circuit elements were iden-
tified as random variables. The correlation coefficients of
these variables were compiled from production data for
the HP5 process. Specifically, the following intradie device
correlations were accounted for:
w Correlations between resistors

Correlations between transistor model parameters
w Correlations between resistors and transistor model pa-

rameters.
A 200-sample Monte Carlo simulation was carried out.

The simulated minimum gain distribution is shown in Fig.
3. It projects a *3a specification of 1.33 to 1.57. Measured
production data for six months shows a distribution with
a mean of 1.43 and a standard deviation of 0.034 (Fig. 4).
The measured data projects a specification of 1.33 to 1.53.
The simulated and manufacturing statistics are compared
in Table I.
Statistical Simulation as a Diagnostic Tool

A second example of the power of this simulation
technique illustrates its role as a diagnostic tool. The por-
tion of the IC under study is the dc restore circuit, which
level shifts the complementary high-frequency outputs to
the ground level. A block diagram is shown in Fig. 5. From

6oo T
500

200

100

:I: Minimum Amplifier Gain

0
1.30 1.35 1.40 1.45 1.50 1.55 1.60

Fig. 4. Six-month production data has a distribution with a
mean of 1.43 and a standard deviation of 0.034. The minimum
gain specification is 1.33 to 1.53.

--

High-Frequency

Level-Shifted

Fig. 5. A portion of the integrated amphfier IC showing the
operational amplifier and resistor bridge of the level shifting
subcircuit. The op amp in this dc restore circuit had a large
low-frequency output offset for which the simulation data
did not match the production data, suggesting a process
anomaly.

Table I
Comparison of Simulated and

Measured Minimum Gain Distributions

Simulated Measured
Mean 1.44 1.43
Standard Deviation 0.04 0.034
Specification 1.33-1.57 1.33-1.53

l4Oo T
1200

1000

800

600

400

200

0
-100 - 80 -60 -40 -20 0

Output Offset (mV)

Fig. 0. Distribution of the output offset of the op amp from
production data. The mean is -49 mV and the standard de-
viation is l l mV.

production data, the low-frequency output offset voltage
of the op amp had been observed to be large. The op amp
output offset voltage is defined as the output voltage of the
op amp when the two high-frequency outputs (inverting
and noninverting) are equal. Under balanced conditions,
the output offset should be close to zero. It was not known
what the standard deviation caused by process latitudes
should be. Fig. 6 shows a typical distribution of this param-
eter from six months of production data. It has a mean of
-49 mV and a standard deviation of 11 mV.

The op amp circuitry has 22 random variables, of which
12 are highly matched resistors and 10 are the transistor
model parameters. Correlated simulations were carried out
as for the first example. A 200-sample simulation revealed
the distribution of the offset voltage to have a mean of 11
mV and a standard deviation of 3.4 mV. Such a large dis-
crepancy between the manufactured and simulated distri-
butions suggests some hidden process anomaly that has
not been discovered.

Subsequently, the process defect that caused this wide
distribution of the output was identified. The circuit was
redesigned to desensitize it to the process defect. The dis-
tribution from one wafer after redesign is compared to the
simulated distribution in Fig. 7. The redesigned circuit
shows a mean of 6 mV and a standard deviation of 4.8 mV.
The simulated values are close to the initial production
data. The slight discrepancies of the standard deviations
can be accounted for by a variety of second-order effects
that were not included in these simulations, most notably
variations in metal resistivity and metal-to-metal contact
resistance.

15 *O 5 I

-10 0 10 20 30
(a) Output Offset (mV)

LLlL- 50 0 -10 0 10 20 30

(b) Output Offset (mV)

Fig. 7. (a) The distribution of the output offset voltage of the
op amp from 200 correlated simulations has a mean of 11
mV and a standard deviation of 3.4 mV, very different from
the production data shown in Fig. 6. (b) The distribution from
one production wafer after redesign has a mean of 6 mV and
a standard deviation of 4.8 mV, more closely matching the
simulation data.

Conclusions
This statistical circuit simulation study has demonstrated

the accuracy of this technique in projecting circuit perfor-
mance distributions in manufacturing. The technique also
has a valuable role as a diagnostic tool for troubleshooting
process problems. Despite some assumptions used both in
the underlying principal component analysis theory and
the device modeling, these simulations are accurate enough
to be a practical CAD tool in product development.

It is hoped that this approach to design for manufactura-
bility, through synergism of volume production data with
design simulation tooling as exemplified by this simulation
study, will be a significant contribution to manufacturing
technology.

Acknowledgments
The author would like to acknowledge Tom Resman, the

designer of the integrated amplifier, for his assistance in
this study and in the manuscript preparation.

References
1. J.M. Hammersley and D.C. Handscomb, Monte Carlo Methods,
Fletcher & Son, Ltd., 1964.
2. D.F. Morrison, Multivariate Statistical Methods, McGraw-Hill,
1976.
3. R.J. Harris, A Primer ofMultivariate Statistics, Academic Press,
1985.
4. S . Inohira, T. Shinmi, M. Nagata, T. Toyabe, and K. Iida, “A
Statistical Model including Parametric Matching for Analog Inte-
grated Circuit Simulation,” IEEE Transactions on Electron De-
vices, Vol. D - 3 2 , 1985, p. 2177.
5. O.P, Van Driel, “Factor Analysis as an Initial Tool to Obtain
Model& for Circuit Analysis,” IEE Colloquium on Model Pamme-
ters for Circuit Analysis, 1981.
6. C.K. Chow, “Projection of Circuit Performance Distributions
by Multivariate Statistics,” IEEE Transactions on Semiconductor
Manufacturing, Vol. 2, no.2, May 1989, pp. 60-65.
7. A. Dileep, W.R. Dutton, and W.J. McCalla, “Experimental Study
of Gummel-Poon Model Parameter Correlations for Bipolar Junc-
tion Transistors,” IEEE Transactions on Solid-state Circuits, Vol.
SC-12, 1977, p. 552.

OCTOBER 1990 HEWLETT-PACKARD JOURNAL 81

WV\IJN,HPARCHiVE.COM

System Level Air Flow Analysis for a
Computer System Processing Unit
Numerical simulation of particle traces using finite element
modeling and supercomputers gives a good qualitative
picture of air flow features. Computed velocity profiles and
pressure drops have reasonably good accuracy.

by Vivek Mansingh and Kent P. Misegades

TEADY, VISCOUS, THREE-DIMENSIONAL AIR
FLOW within a computer system processing unit S has been analyzed using finite element modeling.

The objective of the study was to investigate the effective-
ness of finite element modeling in predicting the air flow
characteristics within a computer. A full-scale three-dimen-
sional finite element model of an HP 9000 Model 850 com-
puter was created using F%DAP, the finite element code
from Fluid Dynamics International. This model consisted
of over 60,000 nodes and over 40,000 8-node brick ele-
ments. Extensive computations were carried out using
CRAY Y-MP supercomputers. General flow characteristics,

82 HEWLETT-PACKARD JOURNAL OCTOBER 1990

including velocity profiles and pressure drop across the
system, were computed. Numerically calculated particle
traces were recorded using video equipment. It was found
that numerical simulation of particle traces can show good
qualitative features of the flow through the system and the
modeling results of velocity pmfiles through the boards
and the system pressure drop have reasonably good accu-
racy.

Prom Objective
For the thermal management of air-cooled computers,

the key air flow parameters to be determined are the air

110
side

CPU Fan Location 0 Side

1 T
side view

Fig. 1. HP 9OOO Model 850 computer system processing unit
(right side of computer in photo). There are six fans.

WWVV. HPARCHIVE.COM

Top View

1-65cm-I

Front VIM

velocities in the computer cabinet and the pressure drop
across the system. The air velocity flow characteristics in
the system help in designing the system layout at the board
and component level while the system pressure drop forms
the basis for selecting air movers. Thermal management at
the component level also requires the knowledge of board
and component level air flow characteristics.

Traditionally, pressure drop and flow characteristics
within a computer cabinet have been experimentally mea-
sured on prototypes of the machines. Unfortunately, an
accurate prototype can only be available when all the com-
ponents of a system have been designed. This typically
happens only towards the end of a design effort. Therefore,
the flow characteristics and the system pressure drop can
be accurately measured only after almost all the compo-
nents of the system have already been designed. If for some
reason the pressure drop is found to be excessive or the
air flow characteristics are found to be different than ex-
pected, major design changes may have to be made at the
end of the design cycle, resulting in serious product mod-
ifications and delays. Furthermore, experimental measure-
ments in a prototype are both difficult and expensive in
terms of human effort.

It would be advantageous to have modeling tools that
can predict these air flow characteristics early in the design
process. A model could also easily simulate effects of high
altitude, zero gravity, and other conditions. The objective
of this study was to investigate the effectiveness of finite
element modeling in predicting the air flow and pressure
drop characteristics within a computer.

Model Development
As mentioned earlier, a full-scale model of an air-cooled

HP 9000 Model 850 computer system processing unit (SPU]
was created. A photograph and a drawing of a Model 850
SPU are shown in Fig. 1. AModel850 SPU is approximately
1 m high, 0.7 m wide, and 0.7 m deep. It has four processor
boards and several other memory and YO boards. The back-
plane essentially divides the cabinet into two halves: the
CPU (central processing unit] side and the I/O side. It has
six tube axial fans for cooling, which operate in the suction
mode. Four of these fans are for the CPU side and two are
for the I/O side. The air inlet is at the top and the outlet is
at the bottom. Detailed mechanical drawings showing loca-
tions and dimensions of the structural components, printed
circuit boards, suction fans, flow inlets, and flow outlets
were used to create the full-scale model of the system using
FIDAP’s preprocessor FIPREP and mesh generator FIMESH.
The full model was divided into smaller finite elements
using 8-node brick elements. Fig. 2 gives a view of the final
mesh, consisting of 60,507 nodes and 48,600 elements.

From the outset, it was recognized that detailed three-
dimensional modeling from the system level to the compo-
nent level, that is, from the overall dimensions of the
cabinet down to the smallest component on a board, was
impossible, both from a modeling standpoint and because
of computation time requirements. For instance, we esti-
mated that simulating the flow through just one of the CPU
boards having a number of RAM chips, PGAs, CPU chips
and multifinned heat sinks would require a mesh of ap-
proximately 60,000 to 100,000 elements and a run time of
more than 10 CPU hours. Therefore, it was not possible to
model every single component in the system. Since the
main focus for this project was on system level characteris-
tics, a component level simplification in the geometry was
made. To model the components on the boards, it was

Fig. 2. A view of the finite element
mesh for simulation of the air flow
in an HP 9OOO Model 850 SPU.
The complete mesh consists of
60,507 nodes and 48,600 8-node
brick elements.

G€TOBER IW ~ - P A C W F l O JOWINU. 1).8

WWW. H PARC H iVE.COM

~ U T E R AIFFLMS AT ASSEMBLY LEVEL - CRAY SIWULATION

4
Fig. 3. Computed flow velocities
in the X-Z ptane at the entrance to
the printed circuit boards.

assumed that between any two printed circuit boards, a
certain percentage of the flow passage was blocked by com-
ponents. Based on good engineering judgment, for the four
CPU printed circuit boards the blockage was assumed to
represent 30% of the volume between two adjacent boards,
whereas for all the other boards the blockage was assumed
to represent 50% of the volume between adjacent boards.
Flow deflection vanes at the air inlet of the cabinet were

included in the model as infinitely thin plates at the same
angle as the actual vanes.

Although the computational effort required to generate
this three-dimensional model was moderate, it took ap-
proximately 1% engineer-months to create the model be-
ginning from mechanical drawings. It is also important to
note that the use of computer graphics was essential to the
successful creation of this mesh, visual analysis of the mesh

OMWTER AIRFLOW AT ASSEM8i.Y

St%@ FACTOR
0.1ooaE+03

PLOTTED
0.283iE+Ol
AT NWK 61143

EIAX. VECToR

I -

I- -
A O.1ooE+ol
6 O O o o E * o o
c 0:006E#O

- D -.4OOE+OO

P%%P w 0.300E+00
VZ O.BM)E+DO

,ANB -.1OOE+O3 ,
FIOAP 4.51

1Q-nOv-W
17: a 56

WWW. H PARCH IVE.COM '

Fig. 4. computed flow velm~ies
in the Y-Z plane through the
printed circuit boards.

:OMPUTER AIRFLOW AT ASSEMBLY LEVEL - CRAY SIMULATION

>, .

. . :

VELOCITY
VECTOR PLOT

SCALE FACTOR
0.1000E+03

MAX. VECTOR
ROTTED

O.BB62E+Ol

AT NODE 60548

CORNER
SURFACE CUT

3iF%EP
VY 0.30OE+OO
VZ 0.80QE+00
AN6 -. 100E+O3
FIDAP 4.51

IO-Nov-89
17: J7: 07

Fig. 5. Computed flow velocities
through the system.

generator's results being the only good means of checking
progress. For this, both FIDAP's postprocessor FDPOST
and Cray's Multi-Purpose Graphics System MPGS were
used. All computations, including graphics, were per-
formed on CRAY Y-MP supercomputer systems.

Boundary Conditions
The physical problem modeled was three-dimensional,

steady, viscous, laminar, isothermal flow. Because the ve-
locity through the system was of the order of 2 m/s and
the length scales of the components were small, the flow
was assumed to be laminar. The flow was assumed to be
isothermal because the main focus of the problem was the

Fig. 6. Animation of simulated
particle traces representing the air
flow.

OCTOBER 199D WLETT-PACKARD JOURNAL 85

M I

fluid flow characteristics.
On all solid surfaces of both physical and blocked re-

gions, a no-slip velocity boundary condition was specified.
At the two air flow entrances on the top front and back of
the cabinet, no boundary conditions were set. For the air
outlet at the bottom of the cabinet, a constant-velocity bound-
ary condition was defined. However, for the outlet bound-
ary condition, not enough information was available ini-
tially. The flow rate produced by a fan is dependent on
the pressure drop it experiences. Flow rates are given in
tabular or graphical form as a function of pressure drop.
The data used in this work was for the fans running at 60
Hz at sea level. Since we did not know the pressure drop
of the system at the outset, it was not possible to know the
fan flow rate that would define the air exit boundary con-
dition. To get around this problem, the following iterative
procedure was used:
1. An initial fan flow rate was guessed.
2. For this given fan flow rate, the flow field including the
pressure drop was calculated based on the uniform exit
velocity across the exit area that would result in the same
volumetric flow rate as produced by six fans.
3. For this computed pressure drop, the corresponding
flow rate from the fan manufacturer's performance curve
was found.
4. An average of this new flow rate and the previously
guessed flow rate was used to calculate the exit velocities,
which were used as new boundary conditions for the next
computation.
5. This procedure was repeated until the guessed flow rate
produced the corresponding pressure drop according to
the fan curves.

Computations
The three-dimensional Navier-Stokes equations of mo-

tion' were solved in the nondimensional form. The solution
technique used was the segregated method.' A sep
linear system was solved for each of the four degre
freedom-three velocity components and pressure. Relaxa-
tion factors' used for the four degrees of freedom were 0.8,
0.8, 0.8 for the three velocity components and 0.0 for pres-
sure. To improve the accuracy and stability of the solution,
an upwinding factor' of 1.0 was used for all degrees of
freedom for all computations because high velocity gra-
dients were expected in the coarse mesh regions.

Starting from an initial linear Stokes flow solution, the
problem was run for five iterations using the segregated
solver, resulting in the following solution or convergence
errors for the four degrees of freedom:

XVelocity: 0.0084
H YVelocity: 0.0074

ZVelocity: 0.0038
Pressure: 0.021.

The FIDAP User's Manual reco
be driven to 0.001 when using the segregated solver. How-
ever, we were not able to converge to values lower than
these even though several other values of relaxation and
upwinding parameters were tried.

After the initial five-iteration solution, a new fan flow
rate was guessed and a second run was made. The solution
was said to have converged when the pressure error was

88 HEWLElT-PACKARD JOURNAL OCTOBER 1990 I

less than or equal to that of the first run, 0.021. The results
of this iterative procedure are given below:

Typfcal flDAP Run

Run Nurnberof Fancfm Pressure PressureDrop Fandm
lteratlons Guessed Error Computed Actual

1 5 100 0.021 0.46inH20 70
2 7 85 0.016 0.40inH,O 90

In this typical example, 12 iterations were required to
find a value of fan flow rate within 10% of that actually
supplied by the fan. Given that other simplifications in the
model had been made, it was felt that this level of con-
vergence and accuracy was adequate.

On the CRAY Y-MP supercomputer, 10 hours of CPU
time were required to perform the 12 solution iterations
needed. Memory needed was 4.OM words of main memory
and 87M words of secondary memory or scratch memory.
For scratch memory, a CRAY SSD (solid-state storage de-
vice) was used. This reduced an otherwise substantial VO
wait time penalty for disc memory devices to a small frac-
tion of the total run time.

Numerical Results
As mentioned earlier, general flow characteristics in-

cluding the velocity profile and the pressure drop across
the system were computed. Some typical pictures of the
flow velocities through the system are shown in Figs. 3 , 4 ,
and 5. These illustrate well the qualitative features of the
flow entering the CPU side and the 110 side at the top
section, turning and going through the printed circuit
boards, and exiting the fan outlet region. An interesting
aspect of the results is that a substantial portion of the flow
entering the YO side or the rear of the cabinet actually
passes over the backplane obstruction in the top section
and flows to the CPU side at the front of the cabinet. It can
also be seen that'the velocities are low at the entrance,
increase between board slots and then decrease again at
the exit of the board slots. The air velocities are higher in
the four CPU board slots than in the memory and YO board
slots and are in the range of about 1 to 2.75 m/s.

As mentioned earlier, simulated particle paths or traces
were recorded on video. The traces represent the path that
a massless particle would take through the computer cab-
inet if released at various locations along the inlet planes.
Such traces are very useful in giving a qualitative represen-
tation of the three-dimensional complex flow field. Using
MPGS, the Multi-Purpose Graphics System from Cray Re-
search, these traces were animated to show the details of
the flow. The animation very clearly shows the cross flow
of air from the VO side of the cabinet to the CPU side and
other complex features of the flow. A typical picture of
particle simulation is shown in Fig. 6.

Experimental Results
Experimental measurements of the air velocities were

carried out on an actual system with the help of a hot-wire
anemometer. The cabinet walls and some of the boards
were modified so that the hot wire could be inserted into
the cabinet at the desired locations. Velocity profiles were

E W W W . H PARCHIVE.COM

f

3*0 T

I I I 1 I I
I I

5 10 15 20 25 30 35 40
Slot Depth (cm)

Experimental Computational
Results Results ----

Fig. 7. Computed and experimental air velocities in CPU
board slot 0 at the middle of the board.

measured in the CPU and I/O board region across the
boards. A typical velocity profile measured in CPU board
slot 0 at the middle of the board is shown in Fig. 7. The
slot depth (X in Fig. 3), is plotted on the x axis while the
respective velocities are shown on the y axis. It can be seen
that the air velocities are in the range of 1.25 d s to 2.25
m/s. The velocities are about 1.5 m/s at both ends of the
board, with the highest velocities of about 2.25 d s in the
middle of the board. One of the reasons for the nonunifor-
mity in the velocity profile is the presence of various com-
ponents (chips, heat sinks, etc.) on the board.

A comparison of the numerical results with the experi-
mental results is also shown in Fig. 7. The numerical results
predict higher velocities in the center and lower velocities
near the ends than were actually measured. However, the
range of velocities is about 1.5 m/s to 2.75 d s , which is
relatively close to that measured experimentally. It should
be noted that in the numerical simulations, the board com-
ponents were modeled as blockage to the flow, whereas in
the experiments, the boards had actual components on
them.

Conclusions
Steady, viscous, three-dimensional air flow within a

computer SPU has been analyzed using finite element model-
ing. General flow characteristics including velocity profiles
and pressure drop across the system were computed. Nu-
merically simulated particle traces were recorded using
video equipment. It was found that numerical simulation
of particle traces can show good qualitative features of the
flow through the system. The particle traces show some
extremely interesting flow characteristics that could not
have been known easily otherwise. The computed velocity
profiles through the boards and the computed system pres-
sure drop have reasonably good accuracy. Modeling pre-
dicted the air velocities through the CPU board slots to be
about 1.5 d s to 2.75 mh whereas the experimental mea-
surements showed about 1.25 d s to 2.25 d s . However,
finite element modeling can be relatively expensive in
terms of computation time.

References
1. H. Schlichting, Boundary Layer Theory, McGraw-Hill, 1979.
2. FIDAP Theoretical Manual, Fluid Dynamics International.

OCTOBER 1990 HEWLETT-PACKARD JOURNAL 87

HEWLETT-PACKARD JOURNAL

Technlwl lntormatlon from tha Laboratorler of
HewletbPackard Company

Hewlen-Packard Company, 3200 Hillview Avenue
Palo Alto, California 94304 U SA

Hewlen-Packard Marcom Operations Europe
P 0 Box 529

1180 AM Amstelveen, The Netherlands
Yokogawa-Hewlett-Packard Ltd , Suginami-Ku Tokyo 168 Japan

Hewlen-Packard (Canada) Ltd
6877 Goreway Drive. Mississauga. Ontario L4V 1M8 Canada

1 Hewlett-Packard Company, 32th Hillview
Avenue, Palo Alto, California 94304

ADDRESS CORRECTION REQUESTED

Bulk Rate
U S. Postage

5'

WWW.HpARCHIVE.COM L

