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In this Issue 
E3%%% Our cover subjects this month can barely be seen in the cover photograph. 

They’re the two tiny specks in the middle of the flat plate in the foreground. 
They are spheres of barium ferrite that serve as the frequency-sensitive 
elements of magnetically tunable bandpass filters for the millimeter-wave 
frequency range. (The millimeter-wave range is the region of the elec- 
tromagnetic spectrum from about 30 to about 300 gigahertz. It’s becoming 
more important as radar, communications, and other systems move to higher 

I frequencies seeking higher performance or less crowding.) These filters are 
used as preselection filters in the HP 11 974 Series preselected mixers, a 

family ot tour mixers designed for down-converting millimeter-wave signals from the 26.5-to-75- 
GHz range into the frequency range of compatible HP spectrum analyzers. The preselection filter 
removes unwanted image and multiple responses, natural consequences of the mixing process, 
that clutter the spectrum analyzer display and obscure the desired response. In the microwave 
frequency range, below 30 GHz, yttrium iron garnet (YIG) spheres have been used as resonators 
in such filters, but at higher frequencies, tuning magnets for YIG spheres begin to pose design 
problems, so a new material was needed. A new four-sphere filter design was also found necessary 
to achieve the required performance. The design and performance of the HP 11974 Series 
preselected mixers are described in the article on page 49. The article on page 59 gives the 
reasons for the choice of scandium-doped, M-phase barium ferrite for this application and tells 
how the spheres are made. 

Software for computer integrated manufacturihg (CIM) is in great demand, and HP development 
laboratories are responding with a steady stream of new products. Two are featured in this issue. 
The first, HP Interactive Visual Interface, or HP IVI, uses object-oriented design, the industry-stan- 
dard X Window System, and widget technology to help application software developers provide 
graphical user interfaces for industrial applications. (Widgets are standard pieces of software that 
produce pushbuttons, scrollbars, and the like on computer screens.) HP IVI improves its users’ 
productivity in designing user interfaces because it is interactive, facilitates saving and reusing 
interfaces, and doesn’t demand that users know the details of the X Window System or widgets. 
The article on page 6 gives an overview of HP IVI, which consists of two main parts. Users 
construct their interfaces using HP IVl’s interactive editor, described on page 32, and then activate 
the objects created with the editor by writing C-language programs using a toolkit of functions 
provided by HP IVl’s application program interface. Details of the application program interface’s 
object-oriented toolkit are in the article on page 11, and the design of the application program 
interface is the subject of the article on page 21. In the article on page 39, we’re told how the 
HP IVI editor’s own user interface was refined and given a 3D appearance with the help of a 
team of industrial designers. 

The other CIM software product in this issue is HP Device Interface System, or HP DIS. It 
addresses the problem of efficiently developing interfaces between computers and factory-floor 
devices like robots, programmable controllers, and machine tools. This is a problem because 
these devices typically come from many manufacturers and have different, proprietary interfaces. 
HP DIS is a toolkit that helps application software developers create and test interfaces between 
HP 9000 computers and factory-floor devices. Its development facility provides a high-level lan- 
guage for specifying communications protocols. Its testing facility provides a test generator, a 
test exerciser, and a device simulator that makes it unnecessary to have actual devices to test 
interfaces. The HP DIS run-time facility executes protocols in real time. The design and perfor- 
mance of HP DIS are described in the article on page 62. 

m 



Simulation is an important part of many design processes because it makes it possible to refine 
a design without actually building anything, provided that the computer d e l  used for simulation 
accurately reflects the behavior of the device or system being designed. Engineers at HPs 
Colorado Integrated Circuits Division wanted to verify the accuracy of the electrical models of a 
408-lead multilayer ceramic package for a large integrated circuit chip. The models were made 
up of discrete inductances, capacitances, and resistances. To verify the models, these parameters 
had to be measured on a real package. When traditional high-frequency measurement methods 
proved inadequate, new methods were developed. These methods are the subject of the paper 
on page 73. 

In integrated circuit design, the objective of simulation is sometimes to predict, in the design 
phase, the statistical distributions of a circuit’s performance parameters in production. A problem 
is that IC parameter variations aren’t all completely random, as they are assumed to be by 
commercially available circuit simulators. Those within a chip, such as side-by-side resistor values, 
are highly correlated, and failure to take this into account leads to inaccurate? simulations. In the 
study reported in the paper on page 78, this problem was solved by applying principal component 
analysis, a branch of multivariate statistics. Each circuit parameter was expressed in terms of a 
set of independent random variables. The independent variables were then used as the inputs 
to the circuit simulator program, and the results were later converted to circuit parameter data. 

Another application of simulation, this time to predict the pressure drop and air flow characteristics 
in a computer system processing unit, is described in the paper on page 82. In the past, these 
quantities have been determined from measurements on prototype machines, which are available 
only after most of the design has been done. If the measured results are unacceptable, major 
design changes may be required. The study showed that, using supercomputers and finite element 
modeling, it is possible to simulate the air flow accurately enough to allow meaningful decisions 
early in the design phase. 

R.P. Dolan 
Editor 

Cover 
The flat plate in the foreground is the iris plate from a magnetically tuned preselection filter 

used in the HP 11 974 Series preselected mixers. In the middle of the plate are two tiny barium 
ferrite resonator spheres. Also shown are the top and bottom halves of the tuning magnet, the 
magnet body, and the two parts of the waveguide assembly. 

What’s Ahead 
In the December issue, we’ll have articles on the autochanger and servo design and system 

integration of HP’s 20-Gbyte rewritable optical disk library system, designed for direct access 
secondary storage. Error correction, software protection, and system integration of HP’s CD-ROM 
drive will also be featured. The data communications and terminal controller for HP 3000 computers 
running the MPE XL operating system now supports X.25 network packet assembler/dis- 
assemblers; two articles will deal with this capability. We’ll also have a research report on aniso- 
tropic dimensional changes in cold-drawn copper beryllium alloy as a result of aging. 
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An Overview of the HP Interactive Visual 
Interface 
The HP Interactive Visual Interface (HP /VI) product uses 
object-oriented and window technologies to provide 
interactive and programmatic tools for building graphical 
user interfaces. 

by Roger K. Lau and Mark E. Thompson 

1 N THIS AGE OF INFORMATION, creating effective user 
nterfaces for industrial automation applications is a 

- &eater challenge than it has ever been. The right details 
from a vast array of information must be shown in the 
appropriate form to the intended group of viewers. In ad- 
dition, the information that is communicated must be con- 
veyed in such a manner as to enhance the decision making 
process. It often takes more time to develop the interface 
than it takes to develop any other part of an application. 
HP Interactive Visual Interface (HP M) is designed to help 
developers provide the type of user interface needed for 
industrial applications. 

HP M is a user-interface development tool built on the 
X Window System Version 11 and runs in the HP-UX 
operating system environment. It consists of two main 
parts: an interactive editor (HP MBuild) and an application 
program interface (API). Users construct their symbols and 
displays with HP IVIBuild [the builder) and write a C pro- 
gram using the M I  calls to call up and activate the windows 
and other objects created with the builder. An application's 
user interface can be constructed without the assistance of 
HP IVIBuild, but with it productivity is greatly increased 
by the ability to create the interface interactively. HP IVI 
is also one of the few products to combine at the builder 
level the power of a graphical presentation with the flexi- 
bility and interactivity of widgets [e.g., pushbuttons, 
scrollbars, and toggle buttons).' 

This article describes some of the market research and 
the target customers for HP M ,  and provides an overview 
of the two main components of HP M ,  HF' IVIBuild and 
the application program interface. 

Market Research 
The main customers of HP IVI are software engineers 

who build industrial applications. This includes system 
integrators, independent software suppliers, and end users 
with internal software engineering groups. These users 
benefit by being able to customize screens to their custom- 
ers' applications and by being able to reuse the symbols 
they created and saved in previous applications. HP IVI 
also buffers its users from having to know the details of 
the intrinsics of both the X Window System and widgets. 
This is considered to be a benefit and a boost to productiv- 
ity. 

Market research indicates that manufacturing applica- 

tions require graphical user interfaces, and the use of 
graphics on the factory floor is growing and being applied 
to monitoring production processes and data gathering. 
The requirements are performance, reliability, and the in- 
tegrity of data from a workcell. To satisfy these demands, 
the HP IVI product: 

Minimizes the user's expense for the development of 
user interfaces 
Provides a distributable user interface for improved cost, 
performance, and flexibility 
Offers windowing functions and dynamic data config- 
uration 
Integrates graphics and widgets intelligently 
Gives software engineers the productivity boost needed 
for them to remain competitive 
Ensures top performance and reliability 
Gives the user full control over data from the factory floor 
Builds on standards. 
Earlv in the project, the HP IVI project team used a 

techn;que called quality function deployment (QFD) to 
help analyze customer needs in the industrial automation 
area. This research helped to define the features for HP 
M. The box on page 9 provides more information about 
QFD and its use by the HP IVI team. 

HP IVlBuild 
HP IVIBuild is the interactive window and symbol build- 

(continued on page 8 )  

HP IVI Build 

Objects Created 
by HP IVI 

4 ADDliMtlon 

API = Application Program lnterfaoe 

Flg. 1. HP IVlBuild is used to create user interface objects 
that are saved in a file, and a user application uses the API 
functions to retrieve and manipulate the objects. 
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HP IVI Project Management 

The HP Interactive Visual Interface project was a relatively 
large software project (100 KNCSS) and as such it was faced 
with some interesting challenges during product development, 
Besides the normal challenges associated with software project 
management (e.g., version control, code inspections, project 
standards, and schedule deadlines), HP IVI was faced with three 
main challenges: determining the exact customer needs before 
design and implementation, using existing software, and using 
new software development technologies. For determining cus- 
tomer needs, a process called quality function deployment (QFD) 
was used. This process helped us to determine the feature set 
for HP IVI (see box on page 9). The existing software was a 
combination of software from other HP entities and from outside 
vendors. Finally, the new technologies included the use of objects 
and windows for design and implementation. 

Exkting S o m m  
One of the primary goals of HP IVI was to leverage the work 

of others. The decision to use existing software resulted from the 
desire to decrease the time to market for the product by reducing 
the engineering time and effort involved in design, implementa- 
tion, and support. There was also a need to base HP IVI on 
components that conform to standards (explicit or de facto). To 
these ends, the basic framework of HP IVI is based on software 
that was purchased as well as software that was produced by 
other entities in Hewlett-Packard. 

The HP IVI project team realized the benefits that could be 
obtained by leverage early on. The basic object-oriented 
framework, the error handling routines, the X11 client library and 
server, the X toolkit, and the HP X widget set were all the work 
of others. While we certainly achieved our goals of reducing 
design, implementation, and support costs, we missed our orig- 
inal time-to-market goals. 

Following are some of the lessons we learned about leveraging 
existing software. . The quality and stability of existing code is a critical factor. If 

there are many defects in this code, much time will be spent 
isolating the problem and negotiating with the software 
supplier to have it repaired. This can wreak h a m  with a project 
schedule. One way around this is to obtain the source code 
for the underlying software and make the repairs locally. This 
may provide the most timely solution, but also raises many 
supportability questions. 
Negotiating enhancements to the existing software may be 
difficult. Priority lists may not mesh well between vendor and 
receiver. Important enhancements in the underlying software 
may be delayed because of this. . Performance of a product may be adversely impacted by exist- 
ing software. If this is the case, lobbying for improvements 
may be time-consuming and marginally successful. . Good documentation of existing software is essential for a 
product to be successful. Inadequate or inaccurate documen- 
tation can also impact schedules. 

1 It is very important to establish a good line of communication 
and a strong working relationship with the existing software 
supplier. Changes made to their product may have drastic 
effects on the local product. It is important to learn about 
changes as early as possible (Le., at the investigation phase 
rather than at the release phase). 
Project teams that leverage a large amount of software from 

other sources should be very careful not to assume that leverag- 

ing means that less attenti i  can be paid to producing a very 
detailed design. Leveraging software does not mean there is no 
cost associated with it. Engineers have to learn and understand 
the code, design impacts must be assessed, and the leveraged 
code must be supported over the life of the product. Also, 
leveraging product components does not automatically ensure 
a faster time to market. 

N.w Technologier 
HP IVI is an object-oriented system that is based on the widget 

technologies and the X Window System. Through the QFD pro- 
cess we found that building on a standard software platform is 
viewed as an important requirement by our target market. 

At the start of the HP IVI project no one on the team had any 
experience with object-oriented programming and design and 
only one person was familiar with window systems. Therefore, 
we had to develop a process to disseminate technical information 
and promote technical expertise among the project team very 
quickly. This was aGcom hed thfough training, the exchange 
of informatbn during design and code reviews, and the simple 
sharing of expertise among the project team. 

The following observations come from our experience with 
object-oriented programming and design: . Careful consideration should be given to mapping object 

classes to source code files. The consequences can be fre- 
quent file access conflicts when changes are made to a file. . The temptation to redo class hierarchies should be controlled. 
Developers must be careful to make practical choices on when 
the class hierarchies are sufficient. . First-time users should not expect magic. We believe that there 
was a significant learning curve involved in our decision to 
use object-oriented programming and design. . Once the learning curve is overcome, the object paradigm is 
a natural and produotive one to use for developing software 
products. 
Object-oriented programming and design have a technical 
jargon that might mystify develop and their managers at 
first. Therefore, familiarity with and nsistent use of terminol- 
ogy must be established at the start of the project. 
The object paradigm is not applicable to all software engineer- 
ing projects. Knowing when to reject this technology in favor 
of a procedure-based design is important. 
The use of multiple new technologies in a project with few 

team members having experience in any of these technologies 
does have its problems and can be a significant factor on the 
schedule because it is difficult to anticipate problems and avoid 
pitfalls. However, using new technologies on a project can be a 
significant motivator to the engineering staff. Benefits and risks 
of the inclusion of new technology in any product development 
effort must be weighed carefully. 

Chuck Robinson 
Section Manager 

Industrial Applications Center 

Robin Ching 
Project Manager 

Industrial Applications Center 
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er of HP IVI. It is an API application because it uses the 
HP IVI API library of C functions to handle both the visual 
and the nonvisual aspects of creating objects such as man- 
aging object data structures and performing operations re- 
quired to manipulate objects. Consequently, the windows 
and models created and saved by the builder can be restored 
by an API program and vice versa (see Fig. 1). For the most 
productive use of HP M, the user first creates the windows 
needed by an application using HP IVIBuild and then 
mobilizes the created windows using a C program contain- 
ing API functions. Fig. 2 shows an application user inter- 
face being created with HP IVIBuild. Although an entire 
HP M application could be written using just the API C 
functions, HP IVIBuild provides the following advantages 
over this method: . No initial programming is required. 

The user can look at the user interface and manipulate 
it while creating it. . The interface can be altered very quickly. . Several graphical conveniences are available such as 
snapping to a grid and a simple method of creating ellipses. 
An API program that uses HP MBuild-created objects 
is much simpler than one that creates the same objects 
from scratch. 
Symbols created in an HP IVIBuild session can be saved 
and reused. 
The articles on pages 32 and 39 provide more information 

about HP MBuild. 

Objects and API 
Since HP IVI is an object-oriented system, all operations 

are done with objects, resulting in a system that is a hierar- 
chy of objects. Building this hierarchy starts with creating 

window objects (windows on the display) and then placing 
graphics and widget objects into the windows. To activate 
the objects in the window (Le., give them dynamic proper- 
ties) some of the attributes of the objects can be changed 
(e.g., foreground or background color, visibility, or fill per- 
centage for a rectangle). When an application uses objects 
to display data values, it can make calls to the API functions 
to update the data values in the objects displayed in the 
windows. 

The objects used in HP IVI are categorized into four 
hierarchical layers: 

High-Level Objects. These objects specify global attri- 
butes for the other levels of objects. This level includes 
the window and model objects mentioned earlier. . Composite Objects. These are organizational groupings 
of primitive objects. This includes menus and their com- 
ponent menu panes, row-columns, and scroll lists. . Primitive Objects. These are basic widgets and graphics 
objects-the basic visual pieces that make up the display. 
Graphics primitives include items such as polylines, 
splines, arcs, rectangles, and circles. Widget primitives 
include pushbuttons, toggle buttons, text widgets, text- 
edit widgets, menu buttons, and scrollbars. Both types 
of primitive objects can receive input from the user. 
Low-Level Objects. These are mostly nonvisual objects 
that are used to specify certain object attributes. Objects 
that handle object data structures and objects that handle 
events are examples of low-level objects. 
Because an object hierarchy is used, displays can be 

created from the top down (parent to child) or the bottom 
up (child to parent), giving the designer a lot of flexibility 
in implementation. Certain objects can be gathered and 
arranged by making them into children of composite ob- 

(continued on page 10) 

Fig. 2. An application user inter- 
face being created using the in- 
teractive tools provided by HP 
IVIBuild. The tool box, utility box, 
and line width panels are HP 
IVlBuild components. 

8 HEWLETr-PACKARD JOURNAL OCTOBER 1990 

1 , 
% -  



I 

Quality Function Deployment and HP fVI 

Quality function deployment (QFD) is an analytical method of 
collecting and analyzing subjective and objective 
customer needs and wants. It is one of the methods the HP IVI 
project team used to determine the minimum feature set required 
by our target customers. QFD was chosen because it fac 
not only the translation of customer wants and needs into p 
features, but it also enforces consideration of methods to 
ment the features. When the features are known, the project 

hedule and required resources can be properly planned. Since 
r organization (HP's Industrial Application Center (IAC)) was 

new, it was easy to promote QFD as a viable technique because 
there were no traditions ingrained in the organization. 

The QFD process is shown in Fig. 1. The first step is to collect 
the customer needs data. To get this information we visited many 
of the customers who represent our target market. This took 
place over a period of about two months. IAC teams of two or 
three members went out to each customer site. Team personnel 
came from marketing, R&D, and management. These teams pre- 

a broadly defined, theoretical product to each customer, 
g on how the product could make them more successful. 

To get the spoken and latent needs out, a looseky structured, 
open-ended questionnaire was presented as an aid for generat- 
ing discussion. Notes were taken to record as much data as 
possible. The idea behind this technique was that some people 
don't state their feelings directly. They might say, "Forms based 
applications are good ... if you have to use a terminal." But, what 
they really mean is, if given a choice, they wouldn't use a terminal 
at all for that application. 

Once the data was collected it was time for analyzing. We 
formed teams with people from the HP IVI project, marketing, 
and several people from outside IAC. Some of these people 
included learning and human factors specialists and a user inter- 
face developer from another division. One other person was our 
QFD consultant. 

-WII..IIlw .I.W ""W..l... V. h..".. ". 'p..i....P..-..".. 

Method in Satisfying Customer Needs and Wants 1 I 
Fig. 1. The QFD process. 

Customer needs, which we called murmurs, were categorized 
into groups based on some desired customer feature related to 
issues such as ergonomics or performance. When we finished 
categorizing the murmurs, each murmur was ranked into primary, 
secondary, and tertiary needs. Each of these rankings rep- 
resented a translation of customer needs into quantifiable tech- 
nical terms. An example of customer murmurs and the rankings 
is shown in Fig. 2. In most cases we had to derive the secondary 
or tertiary need. From here the features were placed on a tree 
diagram to ensure that there were no gaps, and to guarantee 
that we had met all of our customer needs. 

During data collection, each of the customer needs should be 
given an importance rating. However, our collectors had not 
been trained before going to the customers and so they did not 
collect the importance rating with the murmurs. The team as- 
signed the ratings during analysis. 

The next step was to develop methods for delivering customer 
needs. This was done with knowledge of what could be done 

into choosing a system that could 

dow System. 
Each implementation method was analyzed to determine if it 

had a strong, medium, or weak relationship tosatisfying customer 
needs. This formed the relationship matrix (see Fig. 3). Symbols 
are used in the matrix to indicate the relationship between cus- 
tomer needs and implementation methods. If no symbol is placed 
on the matrix then the implementation has no relationship to 
satisfying customer needs. This graphic representation is very 
useful. One can look at the matrix and see the areas that cover 
the customer needs and the areas that require more attention 
because they have little or no coverage. This task is the most 
labor intensive portion of the QFD process. 

first and second release of HP IVI 
from the matrix, we d a number to each cell. For each 
feature we summed Is to get an idea of how effective the 
feature w l d  be at the customer needs. We selected 
a cutoff value to determine the set of features that would bring 
us the most return for our investment in engineering time and 
effort. 

QFD proved to be an excellent tool for product definition. The 
feature set that was established for HP IVI has generated much 
customer interest. One of the most significant benefits from this 

Tertiary Primary Secondary 

Screens Come up 

Many Symbols 10 to 20 
on Screen Seconds 

Must h v e  Good 
Performance 

Pictures not Text Icons Must Have Good 
Ergopomics 

Must Have Range 
Forms Entry Checking for 

Needed Data Entry 

Fig. 2. A sample of customer needs and wants (murmurs) 
ranked in primary, secondary, and tertiary order. 
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0 0  
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Symbols Seconds on Screen 

Must Have 
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0 

0 

0 

I a r d w a re ji 
f 

P x  

A A  

0 0  0 

0 0  0 

Software 1 Forms I 

0 

0 0  

0 0  A 

0 0  0 0  

0 Strong Relationship 
0 Medium Relationship 
A Small Relationship matrix, 

Fig. 3. Portion of a relationship 

process was that because the engineering team was involved 
in this process, they emerged with a much better understanding 
of what the users really wanted. 

Knowing when to stop the QFD analysis is important Unless 
specific goals and targets are set, overanalyzing can waste valu- 
able project time. Establishing a set of musts and wants to be 
accomplished with QFD, and drawing clear boundary lines early 
in the investigation phase, helps keep the analysis from bogging 
down in too much detail. Also needed are tools to support the 
technique. The HP IVI team did most of the data analysis manually 

and as a consequence the data has not been updated as often 
as might have been done if the data could be manipulated elec- 
tronically 

Mark Thompson 
Kent Chao 

Software Development Engineers 
Industrial Application Center 

jects. Composite objects can be used to organize and add 
extra control over their descendant objects. For example, 
a row-column object can be used to organize different 
widget primitives into rows and columns. 

All objects in the hierarchy have attributes (e.g., color, 
size, shading, etc.). It is through the control of these attri- 
butes that the displays created with HP M get their 
dynamic quality. One can easily manipulate several attri- 
butes on an object with a single API function call, changing 
location, color, visibility, or some other attribute. Other 
API function calls enable the developer to: 
H Create and free objects 
I Manipulate object attributes 

Save and restore objects 
H Locate objects 

Obtain user input from primitive objects 
Perform visual updates of the display 
Manipulate lists of objects. 
As an example, callback objects can be attached to any 

visual object and cause a callback function to be called 
whenever a predefined event (such as clicking on the 
mouse button or depressing a key on the keyboard) occurs. 
The callback function can be used to obtain and manipulate 
data from the shop floor and modify attributes of objects 

on the display (e.g., changing an object’s color from green 
to red or changing the textual information displayed in an 
object). The API functions and the internal design of these 
functions are described in the articles on pages 11 and 21. 

Conclusion 
HP IVI facilitates the design and implementation of one 

of the most important parts of any manufacturing applica- 
tion-its interface to the user. The benefits of the window- 
ing technology of X I 1  are just beginning to be realized on 
the manufacturing floor. HP IVI is one of the first integrated 
applications to bring the X Windows technology to the 
factory floor. The combination of widgets and graphics 
gives the application designer more freedom to present the 
needed information in the fashion best suited for its in- 
tended viewers. This design freedom promotes the kind of 
informed decision making needed in today’s fast-paced 
and highly competitive industrial marketplace. 
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The HP IVI Object-Oriented Toolkit 
Using object-oriented design techniques, a minimum set 
of functions is provided with the HP /VI product for 
manipulating widgets and graphic objects to create a 
graphical user interface. 

by Mydung Thi Tran and David G. Wathen 

HE HP IVI APPLICATION PROGRAM INTERFACE 
(API) is an object-oriented toolkit of C functions that T enable a software developer to create an interactive 

and informative graphical user interface programmatically. 
The API functions can be used for any application in which 
a highly interactive graphical user interface is required. 
The collection of API functions provides the ability to build 
different models of user interfaces that can be saved and 
used again in other user interfaces. High-level objects pro- 
vide the control and organization necessary to support 
lower-level composite and primitive objects. All objects 
have configurable attributes or characteristics that make it 
possible to customize the look and feel of a particular ob- 
ject. Color, size, and font are a few examples of these attri- 
butes. The API functions allow a programmer to do things 
like create and free objects, query attributes, save and re- 
store objects, get input, and find objects by location. 

This article describes the the API functions and the arti- 
cle on page 21 describes the internal design supporting 
these functions. 

the display. There can only be one system object per appli- 
cation. All other objects (except low-level objects) are de- 
scendants of the system object. The direct descendant of a 
system object must be a server object. 

A server object is the interface to the display system. 
Information regarding the display and its physical charac- 
teristics is stored inthis object. The server object establishes 
the link between the display device (an XI1 server) and 
the user application (the client). Just like the system object, 
there can only be one server object per application. Win- 
dows are the only children of the server object. 

Window objects represent the drawable region of the 
display. A window is an area on a display that connects 
the world coordinate system (e.g., inches, mm, etc.) defined 
for a window to the device coordinates (i.e., pixels) of the 
display system. The window can be seen as a viewport 
into the world coordinate system. An application can have 
any number of windows. They can overlap one another 
and they can be manipulated using a window manager or 

The API Object Hierarchy 
All the components of an API application are separate 

objects that are combined together in a hierarchical arrange- 
ment to form a working user interface. An example of this 
hierarchical relationship is shown in Fig. 1. This relation- 
ship is described in terms of ancestry. For instance, Model 
12 in Fig. 1 is the parent of three children: Model 21, a rect- 
angle, and a row-column object. Another way of saying 
this is that Model 12 is the ancestor of three descendants: 
Model 21, a rectangle, and a row-column object. 

Every API object belongs to one of four groups: high-level 
objects, composite objects, primitive objects, or low-level 
objects. Fig 2 lists the different API object groups. 
High-Level Objects. These objects control and organize 
groups of objects and hold global resources that help define 
other objects in the hierarchy. The high-level objects must 
be created in a specific order: system object, server object, 
window objects, and model objects. Before anything can 
be displayed, at least one of each of these objects must be 
available. Since these objects are required for every appli- 
cation, the API will create default high-level objects if they 
are not explicitly created. 

The system object is the highest object in the API object 
hierarchy. This object stores global attributes that affect 
the input loop, the update pass, and global resources. The 
input loop is composed of the code that handles user input 
and an update pass is the process of flushing changes to 

Fig. 1. The API object hierarchy of a simple application. 
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the API functions. The last high-level object, the model 
object, is the only valid child of a window object. 

The model object allows an application to put composite, 
primitive, or other model objects into a single group or 
collection. When these objects are grouped together, func- 
tions can be performed on them as if they were a single 
object. At the same time, each part will retain its individu- 
ality. Models can represent a symbol or template that can 
be saved and restored as many times as desired. Models 
can have other models, composites, or primitive objects as 
children. 
Primitive Objects. These are basic visual objects that are 
part of one of two categories: graphic primitives or widget 
primitives. The graphic primitives are visual objects (e.g., 
circles, rectangles, and arcs) that can receive mouse input. 
An application can use these objects for graphically repre- 
senting user-oriented objects that display crucial informa- 
tion such as liquid levels and temperature. The widget 
primitives (e.g., pushbuttons, scrollbars, and text edits) are 
also visual objects. However, unlike the graphics primi- 
tives, widget primitives can receive keyboard input as well 
as mouse input. The widget primitives are used for display, 
text editing and input, and selection capabilities. Primitive 
objects have no children. 
Composite Objects. These objects provide the means to 
organize and manage other objects. Specifically, composite 
objects make it possible to group primitive widget objects 
and other composite objects so that they can be manipu- 
lated as a single object. A function or attribute specified 
for a composite object affects its children without actually 
changing them. For example, erasing or redrawing a row- 
column object will cause all its children to be qrased or 
redrawn automatically. 
Low-Level Objects. These are objects that are not directly 
visible like primitive or composite objects. They are stand- 
alone objects that are used to specify attribute values for 
primitive, composite, or high-level objects. Low-level ob- 
jects are used to set attributes for the other three object 
groups, apply API functions to a list of objects, or deal with 
user input from the activated objects. 

High-Level 
Objects 

System 
Server 
Window 
Model 

Composite 
Objects 

Menu 
Uenu Pane 
?ow-Column 
%roll List 

Primitive 
Objects 

Wldgets: 
Image 
Menu Button 
Pushbutton 
Scrollbar 
Text 
Text Edit 
Toggle Button 

Graphics: 
Polyline 
Line 
Rectangle 
Square 
Circle 
Ellipse 
Arc 
Spline 
Text Label 

Flg. 2. API object groups. 

Low-Level 
Objects 

~ 

Callback 
Color 
Font 
Raster 
Input Data 
List 
Point 
Transform 

Polymorphism and API 
One of the key features of object-based systems is the 

concept of polymorphism. Polymorphism allows different 
objects to share a common operational interface (operations 
with the same name). When an operation is invoked, the 
function dynamically determines the object type and exe- 
cutes the appropriate code. Object-oriented programs are 
polymorphic because they can operate on many different 
object types with the same functional interface. This com- 
mon interface provides a great deal of flexibility and ease 
of use to the API programmer. Common access reduces the 
number of functions and increases the power provided by 
the basic set of functions. 

The API functions provide the functionality of 
polymorphism through an identifier called Ztld. When an 
object is created via the ztcreate function, a Ztld is returned 
from the call for use in further operations. The Ztld is a 
pointer to the object that was just created. This handle 
allows the programmer to reference the object when addi- 
tional modifications are necessary. The API functions use 
this identifier to determine the type of object being manipu- 
lated. 

Attributes and Arglists 
Associated with API objects are attributes that describe 

properties of these objects. Examples of object attributes 
include properties that define appearance characteristics 
such as colors and fill patterns for graphic objects, and 
font, highlight area, and 3D shadowing for widget objects. 
There are also coordinate system attributes that control the 
position and sizing of objects, including their point, height, 
width, scale, rotation, and translation. Table I lists the 
categories of API attributes. 

There is a specific list of attributes assigned to each API 
object type. Users can set these attributes to desired values 
or can query the values contained in them through a data 
structure called an Arglist. An Arglist is a variable-length array 
of attribute-value pairs. The following is the C structure 
declaration for an attribute-value pair. 

struct ZtArgListStruct 

ZtAttributeType ZtAttribute; 
ZtValueType ZtValue; 

typedef s t ~ c t  ZtArgListStruct ZtAgListltem; 

/'where: 

1 ;  

+ . . .  1 I */ 

/* ZtValueType is defined as a pointer to a ' I  
I" variable containing theattribute value */ 

- I  I. . .-a- * -  I 

I" ZtAttribute is the def inedettribute *I 

Arglists are used to define attributes of objects or functions. 
Some of the advantages of using Arglists include: 
w Arglists free users from fixed parameters in a function call. 

The number of attributes that the user can pass as param- 
eters can vary. 
The number of function calls can be minimized by in- 
cluding multiple attributes in the Arglist as opposed to 
having to use one function call per attribute change. 
Attributes can be initialized in the Arglist either staticallv 
or dynamically (at run time). 
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Parenting Attributes that affect or define 

1. 

i Coordinate System 

i 

I Trickle-Down 

4 
Color, Font, Raster 

Pattern and Line 

n 
1 

Widget Appearance 

Callback 

Description 
Attributes that are common to most 
objects. For example, the object 
name (ZtNAME), an object’s visibility 
status (ZtVISIBLE), and user data 
(ZtUSERDATA). 

These are attributes that define: 
Size and position such as 
an object’s height and width 
(ZtHEIGHT and ZtWIDTH) 
Transformation, such as 
an object’s rotation, scaling, and 
translation characteristics 
(ZtROTATE, ZtSCALE, ZtTRANSLATE) 
Normalized device coor- 
dinates for placing windows 
(ZtXMIN, ZtXMAX, ZtYMIN, ZtYMAX) 
Aspect ratio of window 
device coordinates (ZtADJUST, 
ZtXADJUST, ZtYADJUST) 
Aspect ratios of server objects 
(ZtXPIXELS, ZtYPIXELS). 

Attributes that affect the 
descendants of objects 
(ZtVISIBLE, ZtSENSITTWE). 

Attributes that specify the 
object’s color, font, or raster. 

Raster lists (ZtRASTERLIST) 
An object’s color (e.&, ZtBACK- 

GROW-COLOR, etc.) 
An object’s font (ZtFONT) 
An object’s raster (e&, ZtFlLL 
RASTER, ZtlCON-RASTER). 

GROUND-COLOR, ZtFORE- 

Attributes that control the 
appearance of borders, lines, and 
fills (e&, ZtFILLTILE, ZtBACK- 
GROUND-TILE, ZtLINLWIDTH). 

Attributes that define a widget’s 
appearance (e.g., ZtSHADOW, 
ZtBOTTOMSH ADOW-COLOR, 
ZtTOP-SHADOW- COLOR). 

Attributes used to attachuser- 
defined functions to an object. 
These functions are used to 
respond to user input. For 
example, ZtREASON specifies 
when a callback function should 
be called, and ZCALLBACKFUNC- 
TlON specifies a function for 
processing user input. 

the current API object hierarchy 
(e.g., ZCHILLLIST, ZtCURRENT- 
MODEL). 

Keyboard Traversal Attributes that assign the input 
focus to an object (e.g., ZtTRA- 
VERSAL, ZtNEXT-TOP-WINDOW). 

Function Attributes that affect the capa- 
bilities of functions (e.g., ZtRE- 
CURSIVE, ZtMERGE). 

API Functions 

Because of polymorphism a minimum number of API 
functions are required for manipulating API objects. 
Polymorphism allows the same API function to be used to 
handle more than one object. Table I1 shows the API func- 
tions available for manipulating the object groups shown 
in Fig. 2. 

Table II 
Categories of API Functions 

Function Use 

Create and Free Objects 

Manipulate Attributes 

Save and Restore Objects 

Locate Objects 

Receive Input 

Perform Visual Updates 

Function Names 

ZtClone, ZtCreate, ZtCreateList, 
ZtFree 

ZtChange, ZtQuety 

ZtSave, ZtRestore 

ZtFindByAttribute, ZtFindByLocation 

ZtDo(. . ,ZtlN PUT,. .) 

ZtDo(..,ZtDRAW,..) 
ZtDo(..,ZtERASE,..) 
ZtDo(. . ,ZtFLASH,. .) 
ZtDo(..,ZtLOWER,..) 
ZtDo(..,ZtRAISE,..) 
ZtDo(..,ZtREDRAW,..) 
ZtDo(..,ZtUPDATE,..) 

Manipulate Lists 

Manipulate Arglists 

ZtCheckListObject, ZtCountList, 
ZtGetListlndex, ZtGetListObject, 
ZtGetListTail, ZtlnsertListlndex, 
ZtlnsertListObject, ZtlnsertListTail, 
ZtMergeListlndex, ZtMergeListTail, 
ZtMergeListObject, ZtRemoveListlndex, 
ZtRemoveListObject, ZtRemoveListTail, 
ZtReplaceListlndex, ZtReplaceListObject, 
ZtReplaceListTail 

ZtFreeArgList 
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Create and Free ObJects 
Objects are created using the function ZtCreate. Any attri- 

butes that are required to be different from the defaults can 
be passed in the object ArgList when calling ZtCreate. For all 
the attributes not included in the object ArgList, the M I  will 
automatically set them to defaults. Once an object exists, 
multiple copies of this object can be made by cloning it 
with the function ZtClone. Ztclone also allows the users to 
alter some of the attributes of the newly cloned objects in 
the same call. 

The following example shows the creation of two text 
objects with one fixed size, different text strings, and differ- 
ent positions on the display. Fig. 3 shows the data organi- 
zation resulting from this example. 

Text Objects (ZtTEXT-OBJ) Point Objects 
f.*"#W.#7 no I\ 

teal-Id + 

-4 I 

textL ld  -+ 
ztx 10.0 
mv ann 

int return-Val; 
Ztld text1 -Id, textilld, pointld; P object identifiers '1 
P arglist for text object (containing attribute-value pairs) *I 
static REAL64 h, w; 
staticZtArgListltem textArglist [ ] = 

ZtHEIGHT, (ZtValueType)&h, r text height 
ZtWIDTH, (ZtValueType)&w, 1' textwidth 
ZtPOINT, (ZtValueType)NULL, I" Ztld for point 
ZtSTRING, (ZtValueType)NULL, P text string 
NULL, (ZtVa1ueType)NULL 

1; 
T arglist for point object 
static REAL64 x, y; 
static ZtArgListltem pointArglist [ ] = 

I 
ZtX, (ZtValueType)&x, 
ZtY, (ZtValueType)&y, 
NULL, (ZtVa1ueType)NULL ; 

Fig. 3. Data organization for text objects created with the 
function Ztcreate or Ztclone. 

int return-Val; 
Ztld textl-Id, textilld, pointld; /" object identifiers'/ 
r arglist for text object (containing attribute-value pairs *I 

. 

. 

. previous example. 

The text Arglist and the point 
Arglist are the same as in the 

arglist for cloned text object 
StaticZtArgListltem cloneArglist [ ] = 

ZtPOINT, (ZtValueType)NULL, 
ZtSTRING, (ZtValueType)NULL, 
NULL, (ZtVa1ueType)NULL 

1 
P create reference point for objects 

x = 1o.o;y = 10.0; 
pointld = ZtCreate(ZtP0INT-OBJ,pointArglist, NULL); 

*I 
. The reference points and the first 
. text object are created the same as 
. in the previous example. 

I* 
I* 

setup to create first text objectwith height = 20 and 
width = 40 
h = 20.0; w = 40.0; 
textArglist[2].ZtValue = (ZtValueType) pointld; 

*I 
' I  

r 
r 

create the second text object at (1 0,60) using the 
ZtClone function 
y = 60.0; 
retumval = ZtChange (pointld, pointArglist, NULL); 
cloneArglist[O].ZtValue = (ZtValue Type)pointld; 
cloneArglist[l].ZtValue = (ZtValueType) "Second text object"; 

* 

textArglist[3].ZtValue = (ZtValueType) "First text object"; 
create the first text object 
textl-Id = ZtCreate (ZtTEXT-OW, textArglist, NULL); 

change point components *I 
y = 60.0; 
return-Val = ZtChange (pointld, pointArglist, NULL); 

"I I* 

r 
t e w l d  = ZtClone (Textl-Id, cloneArglist, 
NULL); 

P create second text object at (1 0.0,60.0) *I 
textArglist[3].ZtValue = (ZtValueType) "Second text object"; 
textilld = ZtCreate (ZtTEXT-OW, textArglist, NULL); r free point object if it is no longer needed 

ZtFree (pointld, NULL); 
I* free point object if it is no longer needed 

ZtFree (pointld, NULL); ZtClone is particularly useful for models and composite 
objects. With one call, the model or the composite object 
and its descendants can be duplicated. A call to ZtClone can 
be modified to control the depth of cloning for a list of 
objects. In the following example there are two model ob- 

Instead of calling ZtCreate twice, the function ZtC~one can be 
used to create the second text string object: 

14 HEWLETT-PACKARD JOURNAL OCTOBER 1990 

i WWW. H PARCH IVE.COM 



jects that have identical properties except for the back- 
ground and foreground colors. The first model object has 
been created with the child list modell Id. Instead of repeating 
the same process for the second model modei2ld, Z t C h  is 
used with the function Arglist containing the ZtRECURSlVE 
attribute set to TRUE. The call ZtChange() changes the colors. 

int retval; 
Ztldmodell Id, model2ld; 
I* objectArglistforcolors '1 
staticZtArgListltem ColorArglist [ ] = 

{ 
ZtBACKGROUND-COLOR,(ZtValueType)red, 
ZtFOREGROUNDCOLOR,(ZtValueType)black, 
NULL,(ZtValueType)NULL 

1; 
P functionArglistfor recursive attribute '1 
static ZtArgListltern recursiveArglist [ ] = 

{ 
ZtRECURSIVE,(ZtValueType)TRUE, 
NULL,(ZtValueType)NULL 

model2ld = ZtClone(model1 Id, NULL, recursiveArglist); 
retval = ZtChange(model2ld,colorArglist, 

recursiveArglist); 

Cloning nonrecursively (ZtRECURSlVE = FALSE] can be 
used in cases where objects need to be referenced but copies 
of these objects are not needed. Fig. 4 shows the data struc- 
ture that would result after nonrecursively cloning the ob- 
jects referenced by the linked list called Listl. Instead of 
copying the objects, a new linked list (Lisa) of pointers is 
created for referencing the objects. The original and newly 
cloned list will dereference the same objects. HP IVIBuild, 
the builder component of HP IVI, makes use of this option 
of ZtCione to duplicate lists of selected objects. The cloned 
lists are manipulated through the use of list functions to 
provide the undo and backup capabilities of HPMBuild (see 

When an object is no longer needed, the function ZtFree 
can be used to free all memory allocated for the object. 
Arglists can also be freed using the function ZtFreeArgList. This 
function will free all memory associated with the Arglist 
including the additional memory allocated for attributes. 

Manipulate Attributes 
Most attributes of existing objects can be modified. For 

example, in an application in which a text object contains 
a string that indicates elapsed time, the time needs to be 
updated periodically. ZtChange can be called passing the 
new value of the elapsed time in the ZtSTRlNG attribute of 

is changed for all objects referenced by the identifier listld. 

I' arglist for foregrourrd &or */ 
static ZtArgListltern fgcArglist [ ] = 

{ 
ZtFOREGROUND-COLOR, (ZtValueType)NULL, 
NULL, (ZtVa1ueType)NULL 

1; 
int return-Val; 

fgcArglist[O].ZtValue = (ZtValueType) steelblue 
P Steelblue is the index into the system object'scolor list 
P (the ZtCOLORLlST attribute on the ZtSYSTEKOBJ). 
/* change the color to steelblue 

return-val = ZtChange (listld, fgcArglist, NULL); 

Default values can also be changed with the same call. 
To change the value of a default attribute, the object type 
and not the objectld must be sent to ZtChange. For instance, 
if at some point in the program it is desired to have all the 
windows have a red background instead of the default blue, 
a call could be made to ZtChange with the object type set 
to ZtWINDOW-OBJ instead of the objectld. 

'P Information about the current value of an object's attri- 
butes or the default values can be obtained by making use 
of the Zauery call. If required, API will handle the space 
allocation for the queried values. The following code frag- 
ment is requesting information on a pushbutton object. 

int return-Val; 
char 'querystr; 
I' arglist for querying string *I 
static ZtArgListitem qstringArglist [ ] = 

{ 
ZtlABELSTRING, (ZtValueType)NULL, 
NULL, (ZtVa1ueType)NULL 

A q y  of the pushbuttonid's label string will be returned in querystr *I 
after the ZtQuery call. A return value of FALSE indi tes that *I 
memory could not be allocated or an invalid pointer is *I 

1; 
I* 
I' 
P 
P specified in pushbuttonld. =I 

retumval = ZtQuery (pushbuttonld,qstringArglist, NULL); 
querystr = (char') qstringArglist[O].ZtValue; 

I" the following call freesthe memory allocated for ZtlABELSTRlNG *I 
P in the ZtQuery call. *I 

ZtFreeArgList(qstringArg1ist); 

Save and Retrieve Objects 
The ztsave function allows users to save objects in a file. 

the object Arglist. 
ZtChange also provides a way to modify several objects 

in one call. The user simply has to put all the desired 
objects into a list and issue a ZtChange call on the list object. 
The changes will be made to all objects that the list refer- 

c ' ences. In the following code fragment the foreground color 

VVVVVV HPARCHIVF COM 
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Fig. 4. Cloning lists of objects nonrecursively. 
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A filename can be specified by the user in the function 
Arglist. If the file exists, the user also has the option to 
overwrite the existing file. Objects or defaults of one appli- 
cation can be retrieved easily in another application with 
the ZtRestore call. In the following example the window 
windowld is saved into a file named windfi1e.w. 

int return-Val; 
Ztld windowld 
I* filename arglist *I 
static ZtArgListltem saveArglist[ ] = 

{ 
ZtFILENAME, (ZtValueType)"windfile.w", 
ZtOVERWRITE, (ZtValueType)TRUE, 
NULL, (ZtVa1ueType)NULL 

return-val = ZtSave (windowld, saveArglist) 

Locate Objects 
The capability of locating the closest object near a user- 

defined point in a window is provided by the function 
ZtFindByLocation. Users can control the aperture of the search 
(i.e., how close or how far from the point) and the depth 
of the search (i.e., whether or not the action should be 
recursively applied down to primitive objects within any 
model or composite object). For example, a row-column 
object contains a pushbutton object, a text object, and a 
scrollbar object. A mouse click (i.e., a button event) gener- 
ated on the pushbutton will cause ZtFindBylocation to return 
the Ztld of the pushbutton if the function Arglist contains the 
value TRUE for the ZtRECURSlVE attribute. If ZtRECURSlVE is 
set to FALSE, the return value of ZtFindByLocation will be the 
Ztld of the row-column object instead of the pushbutton 
(see Fig. 5). 

ZtFindByAttribute also enables the user to match objects that 
have certain properties. For example, if an application 
creates a large number of objects and some of them are 
invisible, to find all the invisible objects, the ZtFindByAttribute 
function is used on the window object, passing an object 
Arglist with the ZtVlSlBLE attribute set to FALSE. 

Receive Input Functions 
Input events like button and key presses can be collected 

using the function ZtDo(Objectld, ZtlNPUf, NULL). Where object- 
Id is the Ztld of a system object and ZtlNPUT is the action for 
ZtDo to do. The input-handling ZtDo function retrieves the 
events and dispatches them to the appropriate callback 
function so that the user-defined action can be executed. 
User input can be collected continuously or in a single pass. 

Visual Update Functions 
In addition to getting input, ZtDo provides several other 

actions. It provides the capabilities to update, draw, re- 
draw, flash, erase, raise, and lower objects on the display. 
The following is a list of the different operations possible 
with the ZtDo function. 
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P redraw all objects whetheror not they have been modified 
ZtDo(systemld, ZtREDRAW, NULL): 
I* draw a window 
ZtDo(windowld, ZtUPDATE, NULL); 
I* flash anobject on thedisplay 
ZtDo(pushbuttonld, ZtFLASH, NULL); 
P flash the objects on a list 
ZtDo(listld, ZtFLASH, NULL); 
I* erase a rectangle object 
ZtDo(rectangleld, ZtERASE, NULL); 
I* erase a list of objects 
ZtDo(listld, ZtERASE, NULL); 
I* draw a text object whether or not it has been modified 
ZtDo(textld, ZtDRAW, NULL); 
P draw a list of objectsother than low-level objects 
ZtDo(listld, ZtDRAW, NULL); 
I* raise a window 
ZtDo(windowld, ZtRAISE, NULL); 
I* lower a window 
ZtDo(windowld, ZtLOWER, NULL); 

Two modes of updating or drawing objects on the display 
are possible: immediate update and deferred update. In 
immediate update mode the windows are redrawn anytime 
there is a visual change in the objects. In the deferred mode, 
the process of redrawing windows can be postponed until 
an explicit update is performed through ZtDo( ... ZtUPDATE ...), 
or a change in the update mode. This mode is useful if 
changes need to be made to many objects and it is only 
necessary to refresh the window once. Both modes are 
activated by setting the system object's update attribute to 
either immediate or deferred. The following code puts the 
system object in the deferred update mode. 

I* update mode arglist for system object *I 
static ZtArgListltem UpdateModeArgIist [ ] = 

{ 
ZtDEFERUPDATE, (ZtValueType)TRUE, 
NULL, (ZtVa1ueType)NULL 

1; 
Ztld systemld, windowld; 
int return-Val; 

Mouse Event 
I (rowcolumnid) 

ZIRECURSIVE 

FALSE 
TRUE 

Ztld Returned from ZtFindByLocation 

rowcolumnld 
Dushbuitonld 

Fig. 5. Locating an object with ZtFindBylocation. When a 
mouse event happens over the pushbutton, if the ZtRECURSlVE 
attribute is FALSE the identifier for the row-column object 
(rowcolumnld) is returned. If the ZtRECURSlVE attribute is TRUE, 
the function searches for the primitive object in the area and 
returns the identifier for the pushbutton (pushbuttonid). 



e application, set update mode to deferred *I 
return-val = ZtChange (systemld, UpdateModeArglist, NULL); 

P now it is necessary to redraw one of the windows '1 
return-val = ZtDo (windowld, ZtUPDATE, NULL); 

List Manipulation Functions 
The MI list manipulation functions allow programmers 

to create and manipulate lists of objects. 
Creating an Object List. The following example creates a 
list of two points using the function ZtCreateList (see Fig. 6). 

P arglist for point object 'I 
static REAL64 x, y; 
static ZtArgListltem pointArglist[ ] = 

{ 
ZtX, (ZtValueType)&x, 
ZtY, (ZtValueType)&y, 
NULL, (ZtVa1ueType)NULL 

I" Identifiers for pointer objects 7 
Ztld pointl Id, point2ld, pointlist; 
/'Identifiers for pointer objects '1 
P create a point at (50.0,50.0) *I 

1; 

x = 50.0, y = 50.0; 
pointl Id = ZtCreate (ZtPOIM-OW, pointArglist, NULL); 

x = 60.0; 
point2ld = ZtCreate (ZtPOINT-OW, pointArglist, NULL); 

pointlist = ZtCreateList (ZtLIST-OBJ, pointl Id, point2ld, NULL); 

Freeing a List. When the list of objects is no longer needed, 
it can be freed. The application has the option to free the 
list along with all the objects it references, or to free the 
list but retain the objects. 

P create another point at (60.0.50.0) ' I  

P create the list for these two points *I 

P free the point list (pointlist) in the example above *I 
int return-Val; 
static ZtArgListltem recursiveArglist [ ] = 

{ 
ZtRECURSIVE, (ZtValueType)TRUE, 
NULL, (ZtVa1ueType)NULL 

1 ;  

P free the list and its references, the two point objects */ 
recursiveArglis~O].ZtValue = (ZtVa1ueType)TRUE; 
retumval = ZtFree(pointlist, recursiveArglist); 

1' free the list but leave the two point objects alone "I 
recursiveArglist[O].ZtValue = (ZtVa1ueType)FALSE; 
return-val = ZtFree(pointlist, recursiveArglist); 

Bookeeping. Three API functions are provided for retriev- 
ing information about list objects. These functions include: 

ZtCheckListObject for verifying the presence or absence of 
an object in a list. 
ZauntList for counting the number of objects in a list. 
ZtGetListlndex for determining the position of an object 

in a list. 
Extraction. An object can be extracted from a list of objects 
by invoking ZtGetListObject and specifying the index of the 
object, or by using the function ZtGetListTail to extract the 
last object in a list. 
Insertion. Objects can be inserted into a list by using: 

Ztlnsertlistlndex to place the object at a specified index 
ZtlnsertListObject to place the object before an object with 
a known identifier 
ZtlnsertListTail to place the object at the end of a list. 
These functions can be used to add an object to the child 

lists of windows, models, or composite objects. The follow- 
ing code fragments demonstrate using these functions. Figs. 
7a and 7b show the results of the ZtlnsertListlndex and the 
ZtlnsertListObject examples respectively. 

P insert an object at location two in list pointListld "1 

pointld; 
Ztld pointlistld, pointl Id, newpointlistld, insertpointld, refpointld, 

int ret; 

1' pointListld : the Ztld of a ZtLIST-OBJ to insert the object into *I 
/* *I 
P *I 
I" fails, the original pointlistld is returned '1 
I* in newpointlistld. If the function succeeds, 7 
P the new list is returned in newpointlistld. */ 

pointl Id : the Ztld of the object to insert into the list 
newpointlistld: the Ztld of the new list. If the function 

objlndex =2; 
ret = ZtlnsertListlndex(pointListld, objlndex, pointl Id, 

&ewpointListld); 

P insert an object (insertpointld) into a list (pointListld) *I 
P in front of another object (refpointld) =I 

ret = ZtlnsertListObject(pointListld, refpointld, 
insertpointld,&newpointListld) ; 

P add a point object (pointld) to the end of a point list 
I' (pointListld) 

ret = ZtlnsertListTail(pointListld, pointld, &newpointListld); 

*I 
*I 

Merging Lists. A list of objects can be merged into another 

Ttx 50.0 I 
RY 50.0 I 

!! ' I  I point-list 

Fig. 6. Data organization illustrating a list of two points 
created with the function ZtCreateList. 
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list by using: 
ZtMergeListlndex to place the list at a specified index 

w ZtMergeListObject to place the list before an object with a 
known identifier 

w ZtMergeListTail to place the list at the end of a list. 
In the following example three objects of type ZtLIST-OBJ 

are used to illustrate merging lists. Listld references three 
objects (objectl Id, object2ld, object3ld), Mergeld references two 
objects (objectllld and objectSd), and Newlistld is the list object 
obtained by merging Listld and Mergeld (see Fig. 8). 

I' Using ZtMergeListlndex to insert all objects of Mergeld *I 
/* into Listld between objectl Id and object2ld 'I 

Ztld Listld, Mergeld, Newlistld; 
int retval; 
INT32 listindex = 1; 

retval = ZtMergeListlndex(Listld, listindex, Mergeld, 

I* Using ZtMergeListObject to insert all objects of Mergeld into */ 
/* Listld in front of object2ld "1 

&Newlistld); 

Ztld Listld, Mergeld, Newlistld, object2ld; int retval; 
retval = ZtMergeListObject(Listld, object2ld, Mergeld, 

&Newlistld); 

indexes 0 

objlndex 

1 2 3 

Removing Lists. Objects can be removed from a list by 
using: 
w ZtRernoveListlndex to remove an object at a specified index 
w ZtRernoveListObject to remove an object before an object 

with a known identifier 
w ZtRernoveListTaii to remove an object at the end of a list. 

Children of windows, models, or composite objects can 
be deleted by invoking these functions on the list object 
specified in the ZtCHILD-LIST attribute. 

Replacement. An object can replace another object using: 
w ZtReplaceListlndex to place the object at a specified index 

ZtReplaceListObject to place the object before an object with 

ZtReplaceListTail to place the object at the end of a list. 
a known identifier 

replace a point object at the index position of a point 
list (pointListld) with a new point object (newpointlD) 

'1 
"1 

pointListld :the Ztld of a ZtLIST-OW to replace the *I 

newpointid : the Ztld of the object to replace the indexed *I 

replacedld : the Ztld of the replaced object. This variable 
may be given as NULL if this return value is 
not of interest. *I 

object in *I 

object with *I 

4 

-1 

18 HEWLETT-PACKARO JOURNAL OCTOBER 1m 

WWW.HPARCHIVE.COM 

Fig. 7. (a) Inserting the object 
pointld in the list pointlistid at index 
2. (b) Inserting the object insert- 
pointid into the list pointlistld in front 
of the object refpointld. 
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Ztld pointlistld, replacedld, newpointld; 
INT32 objlndex = 2; 
int ret; 

ret = ZtReplaceListlndex(pintListld, objlndex, newpointld, 
Breplacedld); 

The next code fragment illustrates using ZtReplaceListObject "I 
The object identifiers have the following meanings: *I 
pointlistld : same as above "I 
pointindex-Id: the Ztld of the object to replace *I 
newpointld : the Ztld of the object to replace pointindex-Id *I 
replacedld : same as above *I 

ret = ZtReplaceListObject(pointListld, pointindexld, 
newpointld, replacedld); 

replace the tail object of a point list (pointListld) 
with a new point object (newpointld) 

*I 
=I 

ret = ZtReplaceUstTail(pointlistld, newpointld, &replacedid); 

Grouping and Reparenting Objects 
Using the methods and techniques described so far, ob- 

jects can be created and grouped together to form an object 
hierarchy like the one shown in Fig. 1. This is accomplished 
using model objects or composite objects. Model objects 
allow an application to group together composite objects, 
primitive objects, and other model objects into one group. 
They are invisible container objects and they do not own 
any visual attributes. Composite objects have visual attri- 
butes and they make it possible to group together primitive 
widget objects and other composite objects. Examples of 
composite objects include menus, menu panes, row-col- 
umns, and scroll lists. There are two ways of creating model 
or composite objects in MI:  creating objects with the child 
list attribute (ZtCHILD-LIST), or assigning a group of objects 
to another parent. 

object4ld objectlld 

objectlld obiect2ld object3ld 

CMthlg CompoSbS With ZtCHlLDllST 
Using ZtCHILDIIST, model and composite objects and 

their descendants can be created either top down or bottom 
UP. 
Top Down. The composite object is created with NULL as- 
signed to the child list attribute ZtCHILD-LIST. It then be- 
comes the current composite object and all newly created 
primitive objects will automatically become the compos- 
ite's children. For example, to create a menu system from 
the top to the bottom, start from the top of the menu hierar- 
chy and work down creating children. This process is sum- 
marized in the following steps: 

Create the menu object ZtMENU-OM with the ZtCHILD-LIST 
attribute set to N U U .  This will make the menu the current 
composite object. 
Create a menu pane object ZtMENUPANLOBJ. This will 
make the menu pane a child of the menu object and also 
make it the current composite object. 
Create the menu button objects. This will make the menu 
buttons children of the menu pane. 
Change the attribute ZtCURRENT-COMPOSITE on the sys- 
tem object (ZtSYSTEM-OBJ) to the menu object created in 
the first step. This will make the menu the parent of the 
next menu pane. 
Repeat the last three steps until all the menu panes and 
menu buttons are created. 

Bottom Up. To create a composite object from the bottom 
up, create all primitive objects, put them in a list, and then 
create the composite object setting the ZtCHlLDllST attribute 
to the Ztld of the object list. For example, to create a menu 
system from the bottom up, start from the bottom of the 
menu object hierarchy, making the newly created objects 
children of objects higher in the menu hierarchy. This pro- 
cess is summarized in the following steps. . Create a group of menu buttons and put them in a list 

object ZtLIST-OW. 
Create a menu pane with the ZtCHILD-LIST attribute set 
to the Ztld of the ZtLIST-OW created in the first step. 

. w I V E . C O  

Flg. 8. Merging lists. The objects 
on list Mergeld are merged be- 
tween the first and second objects 
of list Listld resulting in a new list 

objectlld object4ld objsct5ld object2ld object3ld Newlistld. 



. Repeat the first two steps until all the menu panes and 
menu buttons are created. 
Put all the menu panes into a list object. . Create the menu object with the ZtCHILD-LIST attribute 
set to the newly created ZtLIST-OBJ from the previous 
step. 

Reparenting 
In API it is not necessary to destroy all the objects created 

and start all over when the user wants to change the objects' 
relationships. Regrouping objects by changing relation- 
ships is called reparenting. The ZtChange function makes 
the task of regrouping very easy. The new child list is 
simply passed to the desired parent object, and the API 
takes care of removing the targeted children from the old 
parent's child list and assigning them to the new parent. 
For example, the following code segment moves the 
pushbutton object PushButton 1 from Model 2 to Model 1, and 
inserts PushButton 1 into the child list of Model 1. 

Ztld pbl Id; 
Ztld modell Id; 
Ztld childlistl Id; 
INT32 ret; 

I* PushButtonl Id *I 
I* Model 1 Id *I 
I' Model 1 childlist *I 
/* Returnvalue */ 

static ZtArgListltem childlistArglist [ ] = 

I 
ZtCHILD-LIST, (ZtValueType)NULL, 
NULL, (2tValueType)NULL 

1; 

T get the current childlist of Model 1 'I 
ret = ZtQuery (modell Id, childlistArglist, NULL); 
if (ret) 
I 

childlistl Id = (Ztld) childlistArglist[O].ZtValue; 

I* add pushbutton pbl Id to the end of the childlist of model 1 ' I  
ret = ZtlnsertListTail (childlistl Id, pbl Id, 

if (ret) 
&childlist1 Id); 

I' Change modell Id's childlist to include the pushbutton pbl Id *I 
T *I 

ret = ZtChange (modell Id, childlistArglist, NULL); 
The API automatically updates the childlist of model 2 

1 

Freeing Model or Composite Objects 
The counterpart of cloning model and composite objects 

recursively or nonrecursively is the ability to free these 
objects from the intermediate parent. Take the case of an 
application in which one of its model objects has a row- 
column object as one of its children. Suppose the applica- 
tion requires that the row-column object be freed, but the 
children of the row-column object must remain. The API 
provides an option in the ZtFree function that allows the 
user to accomplish this task. Setting the ZtRECURSlVE attri- 
bute in the function Arglist to FALSE, and calling ZtFree on 
the row-column object, destroys the row-column object, 
and its children become the children of the model object. 
In contrast, passing a function Arglist to ZtFree with ZtRECUR- 
SlVE set to TRUE will free the row-column object and its 
children. 

Symbols and Models 
Models can be created as children of other models. A 

model within another model is called a submodel. For 
example, in Fig. 1, Model 21 is a submodel of Model 12. The 
user can create a symbol library out of submodels. Cus- 
tomized sets of commonly used symbols can be created, 
saved, and reused as submodels. 

Conclusion 
Based on an object-oriented framework, the API consists 

of a simplified yet powerful set of functions for creating 
and activating user interface components. The application 
developer can learn to use these routines within a short 
time. The developer is also able to combine the dynamic 
animation capabilities of graphics and the flexibility and 
interactive capabilities of widgets to enhance user inter- 
faces for process control applications. Models of physical 
objects such as machinery and instrumentation can be 
created to provide context-specific information that the 
end user can react to more quickly than with a standard 
terminal-oriented interface. 
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HP IVI Application Program Interface 
Design 
To provide the features available in HP IVI, the internal 
design and implementation of the application program 
interface leveraged concepts and software from graphics 
packages, window technology, widgets, Xt Intrinsics, and 
object-oriented design. 

by Pamela W. Munsch, Warren 1. Otsuka, and Gary D. Thomsen 

NE OF THE MAIN goals of the HP Interactive Vis- 
ual Interface (HP NI) project was to leverage fea- 0 tures from current user interface and software de- 

sign technologies and blend the best of each into the feature 
set and design of the application program interface (API) 
functions. In doing so, the project team investigated win- 
dowing, graphics, the X toolkit (Xt Intrinsics), widgets, and 
object-oriented design. This article discusses the features 
used from each of these technologies, and how these fea- 
tures are incorporated into the internal design and im- 
plementation of the API functions (see Fig. 1). 

Windowing 
To hide the complexities of the X Window System's2 

from HP M application developers, the API provides a 
layer of simplifying software over X. The only X features 
left exposed are those that we thought the application de- 
veloper must have access to, or that cannot be layered over. 
Even with this layer of software, the user still has access 
to X functions. For example, X provides an event called 
ConfigureNotify that tells the application that a window has 
been resized, moved, or changed in some way. The API 
handles resizing the window object when this event occurs 
but lets the application decide if all the objects in the win- 
dow should be resized to match the new window's size, 
or if the objects should maintain their sizes and only the 
coordinate system of the window should be adjusted. The 
user still has direct access to the X functions if they are 
needed. 

The API also ensures that all X events (e.g., a mouse 
button press and release) that occur in a window object 
are sent to the application. This is done through callback 
techniques based on the Xt callback mechanism. There are 
also mechanisms and data structures to provide a linkage 
between X event data formats and API data formats. 

Graphics 
Most graphics packages, such as Hewlett-Packard's Star- 

base graphics package,3 provide coordinate systems that 
allow users to write device independent graphics programs. 
Since creating a user interface with the X Window System 
is currently done using pixels, the API project team decided 
to provide API functions that enable user-interface design- 
ers the same type of device independent coordinate system 

features as offered by Starbase. 
Graphics packages provide coordinate systems that: 
Communicate with a particular device (device coordi- 
nates) 
Provide display resolution independence (normalized 
or virtual device coordinates) 
Allow the user to work in a system that reflects their 
world (world coordinates) 
Allow users to move, scale, or rotate images easily with- 
out recalculating the placement and size of the image 
(modeling transformations). 
Device coordinates (DCs) are the coordinates used to 

write to a device. For the X Window System, device coor- 
dinates are defined in pixels. 

Virtual device or normalized device coordinates (NDCs) 
provide a means to gain independence from the resolution 
of the display. This coordinate system maps the width and 
height of a display to the coordinate range from 0.0 to 1.0. 
Normalized device coordinates define a viewport. A view- 
port is a rectangular drawing region on the display surface. 
Specifying the viewport in NDCs maintains the ratio be- 
tween the drawing area and the display size regardless of 
the display resolution. 

World coordinates provide a user-defined coordinate 
system. This system allows users to create pictures using 
the most appropriate coordinate system for the task. For 
example, if the world coordinates represent the physical 
dimensions of a factory, using the dimensions from a blue- 
print of the factory to create a picture is straightforward. 
World coordinates define which area of the unbounded 

API Functlons 

API Int.mal Tachndogios 

0 Graphics 
0 Wlndows 

Widgets 
Xt Intrlnslcs 
0bjectOrhnt.d Design 

Fig. 1. The software technologies incorporated into the inter- 
nal design and implementation of the UP /VI application pro- 
gram interface (API). 

OCTOBER 1990 HEWLRT-PACKARD JOURNAL 21 



world coordinate space is visible in the viewport. This type 
of coordinate system also provides viewport-size indepen- 
dence and display-resolution independence since the 
world coordinates remain the same regardless of the phys- 
ical size or resolution of the display. 

Modeling transformations allow the user to define a 
slightly different view of the world coordinates for each 
piece of the picture. Modeling transformations are geomet- 
ric transformations such as scaling, rotation, and transla- 
tion (movement). This feature allows the user to draw an 
object and then reuse it in the picture by moving, scaling, 
and rotating it to fit the requirements of the picture. 

These three coordinate systems and the modeling trans- 
formations are linked together when an object is drawn. 
First, the object is transformed by its modeling transforma- 
tions to the desired orientation in the world coordinate 
system. The world coordinates are scaled and translated 
to fit into the viewport and converted to normalized device 
coordinates. Finally the normalized device coordinates are 
converted to device coordinates to draw the picture in the 
viewport. These transformations are shown in Fig. 2. 

Widgets and Xt Intrinsics 
The widgets (pushbuttons, scrollbars, etc.) and the Xt 

Intrinsics provide the basis for the API input model and 
for other API features. The API project team took the input 
loop from Xt Intrinsics and added processing to handle 
API graphics objects. Also leveraged from the Xt Intrinsics 
are the methods for getting file descriptor input and time- 
outs. An extension of the Xt callback technique allows 
users to attach functions to window objects to handle X 
events and to API graphic objects, which include geometric 
figures such as circles, arcs, and rectangles, to handle 
mouse button events. 

To keep the number of API functions low, API parameter 
handling is patterned after Xt Intrinsic Arglists. The API 
Arglists are arrays of attribute and value pairs. This feature 
frees the application from having fixed parameter lists that 
force it to make many calls. The application also doesn’t 
have to pass unnecessary parameters. Parameters that it 
doesn’t pass are automatically defaulted. One deviation 
from the Xt Intrinsic Arglist is that the API uses a null-termi- 
nated list instead of a counted list. The API also extends 

XtMalnLoop 

+ Get Next X Event 
XtbxtEvent (a event) - @.e., button press) 

Call Event 
Processing Function 

J 
XtDlrpatchEvent (& event) 

I 

Fig. 3. The Xt lntrinsics XtMainLwp function. 

the attribute default concept so that the application can 
change the defaults of different classes of objects at run 
time. API Arglists are described in the article on page 11. 

Object-Oriented Design 
HP IVI is an object-oriented system. Object-oriented de- 

sign and object-oriented programming are being increas- 
ingly used at HP for software product de~elopment .~.~ The 
goals of object-oriented methods are very appealing be- 
cause they encourage such practices as code reuse and 
functional cohesion of software components (objects). 
Also, once a stable and reliable library of objects is avail- 
able, software development and maintenance costs should 
be reduced. In the API a special utility was used to create 
an object-oriented environment from C language programs. 
The box on page 29 describes some basic object-oriented 
concepts and an overview of the API object-oriented envi- 
ronment. The special utility used for creating the object- 
oriented environment is described later in this article. 

Input Handling 

The input handling model for the API is based on X, Xt 
Intrinsics, and widgets. The Xt Intrinsics provide a way to 
call application functions when certain events occur. These 
functions are called callbacks and are attached to widgets. 
The Xt Intrinsics provide input handling capabilities for 
X events, time-outs, and file descriptor input through the 
XtMainLmp function. This function consists of an infinite 
loop calling XtNextEventO to get the next event and XtDis- 
patchEvent0 to send the event to the appropriate processing 
function (see Fig. 3). Because the API provides several spe- 

1 

0 

Flg. 2. The coordinate systems 
and the transformations involved 
in transforming an object from 
world coordinates to device coor- 
dinates. 1023,767 
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cia1 input features the project team implemented its own 
version of XtMainLoop. 

The basic API input loop consists of an HP-UX select() 
call to see if input exists on either the user's file descriptors 
or the API server object's file descriptors and a test to see 
what events came in (see Fig. 4). If input is pending on the 
file descriptor for the X server a message is sent to the API 
server object to process all X events queued. If input is 
pending on a user's file descriptor the user's callback func- 
tion is invoked. 

The server object still does the XtNextEvent() and XtDis- 
patchEvent0 looping but it has additional code to handle 
conversion of X callback information to API format, 
callbacks on graphic objects and window objects, Expose 
and ConfigureNotify events on window objects, global 
callbacks, and event grabbing (see Fig. 5). 

I 

Callback Handling 
Callbacks are implemented as objects in the API. These 

objects contain a pointer to the user-written function to be 
called when an X event occurs, a pointer to callback-spe- 
cific data, and the specific reason that will cause the 
callback to invoke the user function (see Fig. 6). The file 
descriptor that is checked during input processing is an 
example of callback-specific data. The reason for the invo- 
cation of the callback is an integer value that indicates the 
type of input event such as a button press. These callback 
objects are put in a list called a callbacklist and are attached 
to the object requiring them. For the Xt Intrinsics, the 
callbacks are attached to specific-reason resources instead 
of one central callback list. The API method of handling 

Scan for Input 
File Descriptors 

(select ( )) 

n Call User 
Time-Out 
Callback 

File Descriptor 

m 

yes, 

Flg. 4. The API input loop. 

callbacks eliminates having one attribute per callback for 
each object type and eliminates having to add and delete 
attributes when reasons change. Time-outs and file de- 
scriptor callbacks are attached to the API system object, 
which stores global attributes and resources. X event 
callbacks are registered on the window objects. 

The API creates an identifier @Id) for each object that 
an application creates. However, the data returned to 
callbacks from a widget consists of a widget identifier and 
widget-specific data, which is unusable to API applica- 
tions. This problem is solved by minifunctions that are 
registered with the widgets. These minifunctions are inter- 
faces that convert widget-specific data into something that 
can be understood and used by the API. When a minifunc- 
tion is attached to a widget, the object identifier Ztld is also 
attached to the widget. This scheme allows widgets to be 
treated like other API objects when widget input is re- 
ceived. 

L .. I 

I Region 

3 
Window I 

, 7-7.' 
f N o -  

r Grab \ 

Pending 

7 Exit Loop 

Fig. 5. The API server object event handling loop. 
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Callbacks on Graphics 
Graphic objects include shapes such as arcs, rectangles, 

and circles. Because graphic objects can be manipulated 
the same as windows and widgets in the HP IVI environ- 
ment, we decided to have button press and button release 
events associated with them. Therefore, graphic objects 
need callback functions. For example, an octagon-shaped 
graphic object representing a stop sign may require a 
callback object with a method for stopping some operation. 
Callbacks on graphic objects are handled differently from 
widgets. Since the graphic objects are not widgets, the Xt 
Intrinsics cannot be relied on to call API functions when 
an event occurs on a graphic object. All widget and graphic 
objects have a corresponding extent object. The extent ob- 
ject consists of two point objects that define a rectangular 
region. When associated with an object, the extent defines 
the smallest rectangle that encloses an object (see Fig. 7). 
When the minifunction for window events detects a button 
press or button release, it converts the x,y coordinate posi- 
tion of the sprite to a point object. Since the window 
minifunction is called, this indicates that the button event 
did not occur over a widget (remember the widget mini- 
function converts widget data to API usable data). The 
button event results in a call to a function to find the object 
that is under the point. The function will search the hierar- 
chy for an object that has the point in its extent. If a graphic 
object is found, the object list is searched to see if there is 
a corresponding callback function and if so, the event is 
dispatched to the function. 

Global Callbacks 
A requirement of the API was to detect a function key 

press regardless of the location of the sprite in the window. 
This was a problem if the sprite was over a widget when 
a function key was pressed because widgets grab any input 
over them. The project team extended the callback process 
so that the window object could also receive the event even 
if it was over a widget. This type of callback is referred to 
as a global callback. 

Global callbacks are implemented by providing an addi- 
tional check during the input processing in the server object 
(see Fig. 5). After the event is dispatched to the appropriate 
object, a check is made to see if global callbacks are enabled. 

Callback 
Object 

If so, the event is dispatched again to the window object 
and any global callbacks attached to the window that match 
the event are called. For events that were originally over 
widgets, the x,y coordinates of the event are recalculated 
to be relative to the API window object before dispatching. 
Recalculation of widget points is done because the API 
understands points relative to the window object coordi- 
nate system and not to the widget coordinate system. 

Event Grabbing 
For customers making their own user-interface builders 

and also for HP IVIBuild, a feature was needed to direct 
events only to the window. For example, the normal be- 
havior for a widget pushbutton object is to flash when it 
is selected. However, in the builder, selecting the push- 
button may be the start of a move operation on it. To sup- 
press normal widget behavior and let the application deter- 
mine the meaning of the event, a button press event over 
a widget has to be directed only to the window object. The 
event has to be grabbed. To solve this problem, input han- 
dling at the server object level was modified so that if event 
grabbing is enabled, the event is only sent to the window 
object for processing. 

Window Expose and Resize 
When Expose and ConfigureNotify events occur on API win- 

dow or graphics objects, special functions are called in the 
server object to handle these events. Since graphic objects 
are not in individual X windows as the widgets are (see 
Fig. a), the window object has to redraw the graphic objects 
when an Expose event occurs and resize its children when 
a ConfigureNotify event occurs. 

For an Expose event, the window object removes all Expose 
events for this window from the queue and keeps two lists 
of corresponding extent objects. Remember that an extent 
object consists of two point objects that define arectangular 

p, Graphic Object (a Circle) 

5i-l Function 

Reason for / 
Callback 

(Integer Value Representing 
Type of Callback) Callback-Specific 

Data (e.g., File Descriptors) 

Fig. 6. A callback object in the API. 

uj Objects 

Fig. 7. An API graphic object with an extent for defining the 
smallest rectangle around a graphic object. (a) The graphic 
object (a circle) in a window and the extent represented by 
P, and P2. (b) internal representation of the graphic object. 

c 
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region. One list contains the extents of each m e  event 
in device coordinates. This list is used in the server object 
to create X clip rectangles when graphics objects in the 
exposed region are redrawn. The second list contains ex- 
tents of each expose event in normalized device coordi- 
nates. After constructing these two lists, the window object 
goes through a redraw pass of the objects in the window. 
When the graphics objects are told to display themselves, 
they check the previous normalized device coordinate clip 
list to see if they are in the exposed areas. If they are, they 
send a message to the server object to do the X drawing 
commands. This scheme ensures that only those objects 
that are actually exposed get redrawn by the server object 
and it significantly improves performance if exposed ob- 
jects are only a small portion of the window. 

For ConfigureNotify events, the window object sets the new 
window placement and size values. Then during the next 
redraw of the window, the objects are redrawn to fit within 
the new window size. 

Coordinate S 

The coordinate system concepts and techniques found 
in various graphics packages are incorporated into the API 
functions for drawing graphics objects, windows, and 
widgets on the display. The user can define the viewing 
area in world coordinates (e.g., inches, feet, etc.) and the 
API functions transform these coordinates to a window in 
the X coordinate system pixels. 

A viewport is a rectangular portion of the display onto 
which window objects defined in world coordinates are 
mapped. Viewports are typically defined in a device inde- 
pendent coordinate system called normalized device coor- 
dinates, or NDCs. In X a viewport is represented by an X 
window, which is defined in device coordinates (DCs). The 
API allows users to define the position and size of a window 
object (viewport) with NDC coordinates. This allows a win- 
dow to be defined as occupying a certain portion of the 
total display area independent of display resolution. Map- 
ping a window object described in NDCs to the device 
coordinates of a display is straightforward. When an appli- 
cation initiates drawing to a specific X server, the display 
resolution of the server is queried. The NDC values describ- 
ing the viewport are multiplied by this display resolution 

Graphic ow- 

I--7 ; J = Widget Window - 
Fig. 8. Widgets are in their own individual windows and have 
their coordinates defined relative to these individual windows. 
Graphic objects have their coordinates defined relative to the 
window object they are located in. 

to get pixel values. Since NDCs use the lower-left corner 
of the display as the origin and X uses the upper-left corner 
as the origin, the y values of the viewport must be sub- 
tracted from the height of the display for compatibility 
with the X coordinate system, Since this calculation is 
done at run time, the application does not need to know 
the type of display the app 

Consider a window that 
(0.0,O.O) to (0.5,0.5) on a display that is 1024 pixels wide 
and 768 pixels high (see Fig. Sa). When converted to DCs 
as explained above, the window occupies the region of the 
display atpixellocations (0,767) to (511,384) (seeFig9b). 

The transformation equations for converting from NDCs 
to DCs are: 

P, = P- x (width of display in DCsh NDC) (1) 

P,, = Pym, x (height of display in DCsll NDC). (2) 

To take into consideration the upper-left origin of the X 
Window System: 

P'ym = height of display in DCs - P,. (31 

Substituting the values from Fig. 9a into equations 1 and 
3 and compensating for the starting pixel yields: 

1.0.1.0 

(0. " , " . " , \Y.-,O.O) -' I Origin 
\ 

\ 

(a) 1024 - Pixels 4>> Resolution Display 

?l I L (0,384) (511,384) 

Fig. 9. (a) Window defined in normalized device coordinates 
(NDCs). (b) The same window defined in device coordinates 
(DCs) in the X Window System. 
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PI- = 0.0 X 1024/1 = 0 
PiyX = 768 - (0.5 X 768/1) = 384 
P,, = (0.5 X 1024/1) - 1 = 511 
P&,m = 768 - (0.0 X 768/1) -1 = 767. 

These coordinate values are shown in Fig. gb. 
To define what is drawn within the window object, the 

user defines what portion of the world coordinate (WC) 

space is viewable in that area. This viewable area can be 
changed at run time to perform operations such as panning 
or zooming. To draw to the X window representing the 
user's window object, the API must convert all values in 
WCs into the device coordinates of the display. WCs are 
transformed to pixels in a two-step process. The first step 
transforms the WCs to NDCs and the second step transforms 
the NDCs to DCs. 

\ 

512 Pixels 

Viewable Area in WCs 

Pumhbutton 

(10.0,85.0) (110.0,85.0) 
Display ____----- 

Viewport for 
Window (10.0,47.5) (80.0,47.5) 

Ruh- 
button 

Defined in 

(10.0, I ".", ,"".",I 0.0) (1 10.0,~O.O) 
1 -- 

, I  _ I  

Fig. 10. (a) The viewable area of the world coordinate window is defined to occupy the 
upper-right quadrant of the display. (b) Results of applying the x and y scale factors to the 
pushbutton coordinates. (c) Results of applying translation factors to the scaled pushbutton 
coordinates. (d) Results after applying the flip factor tc compensate for the X window origin in 
the upper-left corner of the NDC space. (e) Results after transforming the pushbutton from 

NDCs to DCs. 
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Every window object contains a viewport-to-window 
transformation matrix (VTM). This matrix describes how 
to scale and translate the viewable WC region to fit within 
the window. A scale factor (SF) is calculated to scale the 
WC width and height to the width and height of the view- 
port. This scale factor for the x coordinate is: 

SF, = width of the window in NDCstwidth of the 
viewable WC region in WCs 

For the pushbutton exmple the translation factors are: 

T, = - 0.005 X 10 = - 0.05 NDCS 
T, = - 0.0067 X 10 = - 0.067 NDCS. 

Adding the translation factor to the NDC points P, and P, 
results in: 

P1, = 0.05 - 0.05 = 0 NDCS 
Pzx = 0.3 - 0.05 =0.25 NDcS 

and for the y coordinate is 

SF, = height of the window in NDCstheight of the 
viewable WC region in WCs. 

For example, in Fig. 10a the viewable area of the world 
coordinate window is defined to occupy a viewport in the 
upper-right quadrant of a display. The scale factors for 
mapping the WC region to NDCs in this example are: 

SF, = (1 - 0.5)/(110 - 10) = 0.005 NDCSNVC 

and for the y coordinate 

SF, = (1 - 0.5)/(85 - 10) = 0.0067 NDCslWC 

To transform the pushbutton coordinates shown in Fig. 
10a from WCs to NDCs: 

Pi, = 10 X SF, = 0.05 NDCS 
Pzx = 60 x SF, = 0.3 NDCS 

Ply = 10 x SF, = 0.067 NDCS 
P,, = 47.5 X SFy = 0.318 NDCS. 

Fig. lob shows the pushbutton scaled to NDC coordinates. 
The NDC system maps the coordinate (0.0,O.O) to the 

lower-left corner of a window. Therefore, if the viewable 
WC region does not map the coordinate (0.0,O.O) to the 
lower-left corner of the window, a translation factor is 
added to the NDC coordinates. The translation factors are 
computed as: 

T, = - SF, X (WC, origin) 
T, = - SF, X (WC, origin) 

A B C  

Widget Scaled 
Smaller 

Fig. 11. The effects of scaling widgets larger and smaller 
around characters. 

Ply = 0.067 - 0.067 = 0 NDCS 
P,, = 0.318 - 0.067 = 0.25 NDCS. 

Fig. 1Oc shows the results of the translation. 
Like most graphics packages, the API follows the conven- 

tion of defining the origin in the lower-left corner of the 
drawing area. However, because the X Window System 
defines the origin to be the upper-left corner, an additional 
translation factor (or flip factor) must be added in the y 
direction to move the origin from the lower-left to the 
upper-left corner. 

The NDC height for the window in which the pushbutton 
in Fig. 10 resides is 0.5 NDCs. Compensating for the flip 
factor (F) results in: 

Pfly = F - P,, = 0.5 - 0.25 = 0.25 NDCS 
P'2, = F - PI, = 0.5 - 0.0 = 0.5 NDCS 

and 
PflX = 0.0 
Pfzx = 0.25. 

Fig. 1Od shows the result of applying the flip factor. 
The scale factors, the translation factors, and the flip 

factor are incorporated into the viewport-to-window trans- 
formation matrix VTM. Combining all the transformation 
factors in one matrix and performing the transformation 
operations looks like: 

smvw oqw 
(Intarfaco to X, 

Xt Intrlnshx, and ..-. . . 

I 

. 
Device 

Layer 
) Independent 

Device 

Layer 
) Dependent 

Flg. 12. The layers of the API architecture. 
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PXNDC PyNDC 11 = Pxwc pywc 11 SFX 0 [ 0 -SF, :] 
Tx (-Ty + F) 1 

Fig. 10e shows the final transformation of the pushbutton 
NDCs to X window device coordinates. The coordinate 
points shown in Fig. 10e are derived by substituting the 
values from Fig. lod into transformation equations 1 and 
2 and compensating for the starting pixel. 

PI- = 0.0 X 1024/1 = 0 
PlYDc = 0.25 X 768/1 = 192 
P Z a c  = (0.25 X 1024/1) -1 = 255 
PZ,,: = (0.5 X 768/1) - 1 = 383. 

Modeling Coordinates 
The API provides modeling transformations that allow 

any object within the user interface hierarchy to be trans- 
formed by scaling (enlarging or shrinking], rotation, and 
translation. This lets the user draw a symbol that can be 
reused by providing only the data that differentiates its 
position and size from another instance of the symbol. The 
API concatenates modeling transformations so that an ob- 
ject is affected by the transformations on its ancestors. This 
allows an entire subhierarchy of objects to be transformed 
by one operation on a common ancestor instead of requiring 
transformations on every object in the subhierarchy. These 
transformations are used when an object is being drawn. 
The modeling transformation values are converted to WCs 
by multiplying the transformation on an object to its WC 
attributes. A current transformation matrix (CTM) is main- 
tained during a drawing pass on the objects. Each object 
multiplies its transformation matrix with the CTM contain- 
ing the transformations of its ancestors. In the API, the 
CTM is initialized to be the VTM. Doing this reduces the 
number of matrix multiplications and improves the perfor- 
mance of the drawing operation. 

Adjustments and Scaling 
Besides allowing the application developer to work in a 

display resolution independent manner when creating the 
windows for an application, the world coordinate system 
allows a user to resize the window interactively and the 
objects to be redrawn without the intervention of the appli- 
cation. Changing the size of the window changes the NDC 
definition of the window. This change causes the scaling 
factors in the VTM to be recalculated at the next display 
pass. The objects are either enlarged or shrunk to fit within 
the new window size. When resizing a window, the user 
may change its aspect ratio. That is, the physical width-to- 
height ratio of the object may be different from the WC 
width-to-height ratio. When this happens, objects begin to 
look distorted. For instance, a circle begins to look like an 
oval. This may be an appropriate action for some applica- 
tions, but for others, especially those where the objects on 
the display are meant to represent something in the phys- 
ical world, the application developer wants the objects to 
maintain their width-to-height ratio. In graphics packages, 
these two modes of operation are referred to as anisotropic 
and isotropic scaling, respectively. The API window object 
provides the attribute ZtADJUST which the application can 

set to ensure that the aspect ratio is maintained. If this 
attribute is set and the window is resized, the WC height 
or width mapping to the window is adjusted to maintain 
the original aspect ratio. This process results in modifying 
the scale factors stored in the VTM. This also results in 
more viewable WC space in the window in either the x or 
the y direction. 

Applying the various coordinate systems to windows 
and widgets has worked successfully. Specifying their po- 
sition and size in NDC or WC units allows the user to 
define them in the same manner as graphic objects. It also 
allows the application to be independent of the display 
and window size even as the user interactively resizes the 
window. 

Scaling and moving widgets works the same as for 
graphics objects. However, as the widgets scale smaller and 
larger, the font that they use does not scale because it is a 
bit-mapped font. The widget scales larger and leaves more 
space between the edge of the text and the edge of the 
widget or it scales smaller and closes in on the text, even- 
tually clipping it (see Fig. 11). A few possible solutions to 
this problem exist. One solution is for the X Window Sys- 
tem to support scalable fonts. This will allow the font to 
scale with the widget. Another solution is to switch be- 
tween a set of fonts with different sizes as the object grows 
and shrinks. Widgets also cannot rotate from a horizontal 
base. In the API, when a widget is rotated, its defining 
point is rotated, and the widget is redrawn in the new 
position with a horizontal base. This allows the widgets 
to be rotated as part of a symbol and to move along with 
any associated graphic objects. Despite these differences 

(continued on page 30) 

Types of Files: 

Class Header File (e.g., c1rck.h) 
Class Definition File (e.g., c1rck.c) 
Library Definition File (e.g., graph1c.r) 
Run-Time Class Information File (e.g., circIe.ltc) 
Glue File (e.g., ciassl1bs.c) 

1. Run rtc on Library Definition File 

graph1c.r 

graphic.c 

2. Compile the Class Definition File 

circ1e.c 
I ==e= citck.h -- 

circle.rtc 

3. Compile C Source File gr8phic.c Generated from rtc Tool 
_ _ _ _ _ _ _ ~  
gr8phic.h 

araahic.c 

4. Glue Library Definition Object File 

cla8slibs.c -wy 
classlibs 0 

graph1c.h 

Fig. 13. The process of adding a new object to the API object 
hierarchy. 
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HP IVI is an object-oriented system. It uses a set of facilities 
called the HP IVI object-o OOE) to provide 
the framework for its implem has two parts: a 
messaging interface and a tool for compiling an external descrip- 
tion of the class hierarchy into C language code. The C code 
defines the dispatch tables u 's interface functions 
to perform messaging (obje ion). Presented here 
are some basic concepts of design and an over- 
view of how the OOE implements some of these concepts. 

Object-oriented design and programming are proving to be a 
natural and productive paradigm for software development be- 
cause they enable developers to represent relationships among 
system components and the tasks to be performed on these 
components in a more natural manner. The main concepts of 
this methodology include objects, messaging, polymorphism, 
and inheritance. 
Objects. An object is the basic unit in object-oriented methodol- 
ogy. tt is a structure that contains local data structures and refer- 
ences to local prooedures (caBad methods) @tat operate on the 
data (see Fig. 1). The current values of an object's internal data 
define the object's Current state. The object's behavior is depen- 
dent on its current state. The data inside an object is private and 
accessible only through one of the methods associated with the 
object. An object acts on Its data when it receives a request 
asking one of its methods to perform some operation. This mech- 
anism is called messaging. 

Objects are created from a template called a class. There can 
be many objects of each class. These objects are called in- 
stances of the class. Each instance is an independent object 
with its own data and state. However, an object instance has the 
same data structures, shares the same methods, and behaves 
the same way as all other instances of the same class. This 
means that objects of the same class will respond to the same 
messagedifferences in object behavior depend on the current 
state (the values of the object instance's data). For example, all 
object instances of an object class that draws rectangles will 
respond in the same way to a raquest to draw a rectangle. How- 
ever, because of differences in the state of the internal data 
structures, the rectangles may bedrawn in different sizes, colors, 
and positions. 

The OOE tool mentioned above is called the rtc (run-time class 
information) tool. The rtc tool compiles a symbolic external rep- 
resentation of the class hierarchy into the data necessary for 

Fig. 1. An object. The internal data structure is private to the 
object and the methods have sde access to the data. 

defining classes a 
representation of t 
to produce static t hich consist of 
two pieces: a category table an les. These tables 
contain information necessary to 
A unique key called the message sed to search the 
dispatch tables for a pointer to a furdm that will service a 
request. The rtc tool also generates a file containing definitions 
of symbolic names for the constants that represent the message 
selectors. Coding using the symbolic names for the message 
selectors provides independence from the structure of the under- 
lying dispatch tabtes and provides more readable code. The rtc 
tool and the type of files it compiles and generates are described 
in more detail on page 31. 
Messaging. Objects communicate with each other through mes- 
saging. Sending a message to an object requests that object to 
perform some actiorr-usually the manipulation of its internal 
data. Messages consist of a minimum of two arguments: the 

a catwary name and a 

category selector in Ms category table and then looks up the 

anism is controlled by a set of central messaging routines. These 
routines are contained in the message interface to the OOE. 
Every object contributes a dispatch table that the messaging 
routines search to determine which object implements a function 
for a particular selector. Associated with each selector is a pointer 
to a method that is called to implement the response to the 
message (see Fig. 2). 

This connection of a message selector to the appropriate 
method is called binding. Binding can take place at compile time 
(early or static binding), or at run time (late or dynamic binding). 
The OOE currently implements static binding. 

In the W E ,  the message selector is the key to determining 
which function gets called when a message is sent to a particular 
object. The message selector is a 32-bit quantity consisting of 

Category -_L.. 

I 
message (Objects, selector) 

t 
R e ~ l i w r  

Methd 
Tables 

€ 
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r msrage (ObbcLb, Display-Time) ,- message (Objrcts, ~ i e p ~ a y - ~ i m )  

L. 15:00:25 

Fig. 3. Polymorphism allows the same message to be sent to different objects regardless of 
their internal data types and methods. 

two 16-bit fields. The upper 16 bits of the selector defines the 
offset of the category to which that message belongs in the 
class's category table. The lower 16 bits defines the offset of the 
method function pointer in the method table. 

If the value of a particular position in the dispatch table is 
NULL, the messaging routines traverse up the class hierarchy 
searching for a method function pointer. When a function pointer 
is found, it is copied to the position in the dispatch tables where 
the upward traversal of the class hierarchy began. This tends to 
improve the performance of the messaging system over time 
because the amount of upward searching is slowly replaced by 
direct function Calls and the NULL values in the dispatch tables 
gradually disappear. Also, the implementation of categories im- 
proves memory use by eliminating method tables when a class 
does not support that category. 
Polymorphism. The concept of polymorphism in object-oriented 
programming enables different types of objects to share a com- 
mon operational interface and to be manipulated by user code 
independent of the actual types of objects. This means that the 
application program does not have to differentiate the object 
type at run time. This differentiation is performed automatically 
by the messaging system. For example, a message to a clock 
object to display the time would redraw the hands in a particular 
position if the clock were drawn as an analog clock, while the 
same message would cause the time to be displayed in text 
format for a clock drawn as a digital clock (see Fig. 3). The clock 
object is polymorphic because the same message can be sent 
to different objects. The application does not have to worry about 
how the time is drawn. That is determined when the method to 
draw the clock interprets the instance data that defines each 
clock object's internal state. A goal of object-oriented design is 

L- method-1 p m n t c  -r=l method-3 

Fig. 4. Inheritance allows methods to be reused. 

to maximize code generality, flexibility, and reusability by defining 
common interfaces that can be supported by many different 
kinds of objects. 

The mechanism of searching the class hierarchy described 
above is how the OOE implements the concept of polymorphism. 
Inheritance. Inheritance provides the ability to create incremen- 
tal definitions of objects (Le., one kind of object can be defined 
incrementally in terms of previously defined objects). The new 
definition extends the existing definitions by adding data to the 
object representation, by adding new methods, and by extending 
the definition of existing methods. Using the update time example 
from above, the analog clock object that produces the graphic 
representation of the time might only implement the method that 
draws the representation of the clock and inherit the more basic 
functions (e.g., audible alarms) from the more general digital 
clock class. Inheritance allows object definitions to be shared 
(rather than copied) and customized by extension (rather than 
by modification). A goal of object-oriented design is to organize 
object definitions so that common behavior is specified in shared 
definitions and object definitions can be extended. 

The external representation of the class hierarchy that is pro- 
cessed by the OOE class compiler (rtc tool) builds tables of 
function pointers. Entries that are not NULL in these tables indicate 
that a particular class implements a particular method. NULL 
entries indicate that a particular class inherits a particular method. 
The class compiler also declares a pointer to the class's parent 
in the hierarchy (see Fig. 4). The OOE messaging routines use 
this information to traverse upward in the class hierarchy when 
searching for a method. 

In object-oriented systems, classes may have one parent or 
many. Single inheritance allows a class to have only one parent. 
This is the model implemented by the OOE. Object-oriented lan- 
guages such as Smalltalk and C+ + allow classes to have more 
than one parent. This is called multiple inheritance. 
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between the operation of the widgets and the graphic and 
window objects, the coordinate system feature of the API 

st i l l  provides a large productivi ty gain for the application 
developer. 
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Object-Oriented Architecture 
Without using an object-oriented programming language, 

the API encompasses features provided by an object- 
oriented language through conventional C language fea- 
tures. The API’s architecture is divided into three layers: 
the API function layer, the API object layer, and the device 
dependent layer (see Fig. 12). The API function layer pro- 
vides the communication interface between a user applica- 
tion and the objects created by the application. It is a thin 
layer of code that validates the user’s parameters and sends 
messages to the objects to perform the tasks requested. The 
functions provided in this layer are described in the article 
on page 11. In the API object layer, an object is created and 
destroyed and all manipulation of an object’s data occurs. 
In the device dependent layer, all the function calls to 
underlying subsystems are made to draw an object to the 
display. 

, 

Messaging in the API 
The API consists of a number of function calls that pro- 

vide the communication path between an application and 
the underlying objects manipulated by the application. 
Most of the API functions require objects as parameters. It 
is through this interface that an object’s specific data and 
the functions that manipulate the data are accessed. In 
essence, the API hides from the user as much as possible 
the details of using objects. 

To provide the interface between an application and its 
objects, a preprocessor tool called rtc (run time class infor- 
mation) is used to define the API object messaging facility 
and class interitance hierarchy based on information from 
a group of description files. Every API class consists of a 
class header file and a class definition file. The class header 
file defines the data storage for each instance of an object 
of that class. This file identifies the object as a member of 
a class or classes and provides the connection to the set of 
methods that manipulate that object’s internal data. The 
class definition file is a C program module that contains 
the methods that are specific to a particular class. The class 
header file must be included in the C program module so 
that the data structure of this object and the class definition 
pointer can be accessed. Once an object’s data structure, 
class, and specific functions are defined, it needs to be 
positioned within the class hierarchy. The positioning of 
the class in the class hierarchy is determined by the nature 
of the class and the methods to be inherited. The simpler 
a class is, the higher up in the class hierarchy it is 
positioned. Conversely, a more complex class is positioned 
further down in the class hierarchy. The positioning of a 
class within the class hierarchy is defined within the library 
definition file. This file defines the methods that are avail- 
able for messaging to a class and the methods that can be 
inherited by that class. 

Adding an API Object 
Adding a new class to the API class hierarchy is a four- 

step process. This process is illustrated for the circle class 
in Fig. 13. First, the library definition file (graphic.r) is used 

these output files (circkrtc in Fig. 13) is the run-time class 
information file, or .rtc file. A .rtc file is created for every 
class defined in the library definition file. It contains the 
class definition structure and the method dispatch tables 
for that specific class. The .rto file is included at the end 
of the class definition file for that class when the class 
definition file is compiled (step 2). In the third step the 
new library definition files (graphic.h and graphic.c) are com- 
piled. Finally, the pointer to the new class must be added 
to the file that defines the class hierarchy. This file is called 
the glue file (das9libs.c). In step four, clasdibs.c is compiled 
with the class header file (graphic.h) to produce the object 
file dasslibs.0.) When these object files (circle.0, graphic.0, and 
classiibs.0) are linked into an application, the addresses to 
the methods supported by the various classes are resolved. 

By using object-oriented technologies, the API is able to 
create graphic objects. One problem users have with soft- 
ware systems such as the X library is that graphic primitives 
are not objects. The X library provides many graphic func- 
tions that operate on the individual pixels of a graphic 
display but the parameters describing the object are not 
kept. For example, if a circle is drawn and the application 
simply wants to change its color from blue to red, all the 
parameters (location, size, line width, etc.) to draw the 
circle must be passed to the X library function again. The 
API solves this problem by providing graphic objects using 
the rtc tool. This allows the user to describe the parameters 
of the object once and then make simple modifications 
only to the parameters that are changing. The application 
is freed from maintaining all of the data necessary to redraw 
all of the graphical objects in the window. 

Concluslon 
The HP M project was successful in blending graphics, 

windowing, X toolkit, widget, and object-oriented tech- 
nologies in the internal design of the API. Because most 
of these technologies were developed separately, it was not 
always clear how to integrate them. The API solved most 
of the problems encountered and as a result of this effort 
a high-level user interface toolkit was created that reduces 
the complexity of building a sophisticated graphical user 
interface for an application. 
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as the input to the rtc tool. The rtc tool takes the library 
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HP IVIBuild: Interactive User Interface 
Builder for HP IVI 
Using the facilities provided by HP IVl’s application program 
interface, HP IVlBuild allows developers to create and 
experiment with different types of application user 
interfaces, save them in files, and bind them to the 
functionality of the application at run time. 

by Steven P. Witten and Hai-Wen L. Bienz 

HE EDITOMUILDER COMPONENT of the HP In- 
teractive Visual Interface product is HP IVIBuild. As T its name implies, HP IVIBuild is a tool that is used 

to build user interfaces interactively. The windows and 
objects that make up the user interface can be saved in a 
file and reused later by other applications using the API 
functions (see Fig. 1). HP IVIBuild is itself an HP IVI appli- 
cation program because it uses the API functions described 
on page 11 as a platform. Fig. 2 shows the architecture of 
HPIVIBuild. 

Early in the design of HP IVIBuild we realized that al- 
though the HPIVI application program interface (API) func- 
tions are several orders of magnitude easier to use than 

A R E 

Files Containing 
Saved User 

Applications 
Restoring User 
Interfaces and 

Adding Functionality 

Fig. 1. HP IVlBuild allows users to create and experiment 
with different user interfaces and save them in files to be 
reused by other API applications. (API = application program 
interface of HP IVI.) 
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Xlib, the X toolkit, and widgets, they are still very complex 
to many users. Therefore, an interactive user interface de- 
sign tool, HP MBuild, was developed to complement the 
API functions. 

HP IVIBuild helps promote software development pro- 
ductivity in areas such as rapid prototyping and the design 
and modification of user interfaces. For rapid prototyping, 
HP IVIBuild allows developers to create complex prototype 
user interfaces. The user can interactively place and size 
all of the primitive graphics and widget objects in a win- 
dow. Once the objects are placed and sized, many of their 
physical attributes such as colors, shadows, strings, and 
fonts can be changed easily within HP MBuild. Even some- 
one who does not have any software background, such as 
a human factors expert, can use HP MBuild to design a 

Display 
output 

Processing States 

State Machine 

0 HP IVI Object-Oriented 
Environment 

Graphics 
HP IVI Widgets 

Driver Xt lntrinsics 
Y ... :_A n___.__ 

i User 
Input 
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Fig. 2. The components that make up the HP IVlBuild ar- 
chitecture. 



complex user interface. This means that an application's 
user interface can be prototyped and evaluated separately 
from the operations performed in the application. 

Besides restoring the user interfaces created with HP 
MBuild, the API functions in the application also make 
the objects in the interface react to user input. Callback 
functions, which are invoked in response to user input to 
the application, can be attached to those objects that should 
respond to user input. If the application requires changes 
to the user interface in response to application or customer 
needs, the previously saved user interface can be modified 
with HP IVIBuild. If the changes involve adding new ob- 
jects, callbacks can be added to the new objects using the 
API functions in the application program. However, if 
changes are made to existing objects, no changes need to 
be made to the application program. 

Fig. 3 shows the interface areas provided by HP IVIBuild. 
The functions of these areas are: 

Utility Box. This area displays current object information 
and the menus for object manipulation. 

w Tool Box. This is the area in which the user selects the 
objects to be manipulated. 
Workspace. This area displays the windows being 
created. 

ObJect-Oriented Deslgn In HP IVlBuIld 
HP IVIBuild uses the API functions and the facilities 

provided by the HP IVI object-oriented environment to 
build its own object-oriented system. The object-oriented 

concepts of objects, polymorphism, and inheritance are 
incorporated into the design of HP IVIBuild. 
Objects. In HP MBuild objects are very simple data struc- 
tures called states. A state is the context of user input (Le., 
the operation in progress) at any particular point in time. 
All states are static (bound at compile time) and have the 
same structure. Only one field in the structure, called a 
message selector, is filled in at run time. This field is used 
to bind HP IVIBuild's user interface presentation to its 
functionality. User interface binding and functionality are 
discussed later in this article. The following is the C lan- 
guage structure of a typical state object. 

CLASSVARS(C1assVars) P This macro is included for *I 
/" compatibility with the HP IVI ' I  
I' object-oriented environment and *I 

*I P is not used by HP IVIBuild. 

extern struct ClassDef DzRect; P Structure containing pointers to *I 
P this state's method dispatch *I 
P tables. Thisstructure is *I 
I' created bythe API rtc tool. *I 

static INT32 groupmembership [ ] { P Array containing a state's ' I  
=NULL P group membership information. '1 

1; I* The purpose of this array is to *I 
P help limit state transitions *I 
I* at certain times. Currently *I 
I" this feature is not used in *I 
P HP IVIBuild. *I 

El 1111111 

t 
Utility Box - Tool Box 

Workspace Area 

Fig. 3.. Interface areas of UP 
IVIBuild. 
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static char objectname[ ] = "s-rect"; P this state's name "I 

1. All state objects have the following structure. *I 

static struct DzRect{ 
struct ClassDef 'class; 1' Pointer to the dispatch tables. *I 
char 'statename; P Pointer to the state's name. *I 
INT32 clsindex; I* A unique id assigned to this state. *I 
INT8 autoterm; I' This state's autotermination *I 

1' flag (if TRUE the state machine *I 
I* terminates the state and if FALSE *I 
I* an action by the user must */ 
I* terminate the state). *I 
P Message sent to the current state */ INT32 selector; 
1' to cause a transition to this 
r state. 
P Pointer to this state's group 
P membership information. 

INT32 'group; 
, -  

r' * L  

7 

I* Data values assigned to the fields defined above 

-state-rect = { 
&DzRect, 
objectname, 
27, 
FALSE, 
-sJect, 

groupmembership 

1; 

I* Initialization. 
P Pointer to dispatch tables. 
I* Pointer to name. 
P State's id number. 
P State is NOT autoterminating. 
I* Message selector that causes 
I" transition to this state. 
P Pointer to group membership 
I* information. 

idstate sJect = (idState)&state-rect; /"A pointer to this state 
Pthatisusedby HPlVlBuild "1 
P to access and manipulate *I 
/'data in this structure. ' I  

Inheritance. In HP MBuild, as in most object-oriented 
systems, state objects are arranged in a hierarchy. At the 
root of the hierarchy is a special state known as the root 
state (see Fig. 4). The root state in HP IVIBuild manages 
interstate transitions. Since the root state is at the top of 
the object hierarchy, it implements many more methods 
than the other states in HP IVIBuild. Using inheritance, 
the lower-level objects inherit all the methods from the 
root state. This inheritance mechanism is used to imde- 

ment state transitions in HP IVIBuild. 
Polymorphism. HP IVIBuild's central input handling facil- 
ity, which is called the state machine, depends on the 
concept of polymorphism. All states in HP IVIBuild have 
the same operational interface (i.e., the state object is 
polymorphic). Therefore to the state machine, all states 
look the same and are able to respond to the same set of 
messages. The state machine does not know or care which 
state is currently active. It only knows that the current state 
either implements or inherits all the methods that are the 
targets of messages being sent to it. 

The box on page 29 provides a brief review of object- 
oriented concepts and the HP M object-oriented environ- 
ment. 

Input Handling 
Messages sent by the state machine to a particular state 

can result in either an interstate transition or an intrastate 
transition depending on the message that is sent. Interstate 
transitions are transitions among the various state objects 
of HP IVIBuild, and intrastate transitions are transitions 
within a particular state object. 

A new state becomes current by an interstate transition. 
Interstate transitions are handled by the state machine. All 
input in HP IVIBuild goes through the state machine. The 
state machine is an API callback function that is attached 
to all the components of HP IVIBuild's user interface and 
all of the workspace windows created by the user. The 
objects in the HP IVIBuild user interface are called user- 
interface objects, and the objects created by the user during 
an HP IVIBuild session are called user-workspace objects. 
Using this mechanism, HP MBuild is able to control the 
context of the user's input. This is an important require- 
ment of any interactive design tool. 

The state machine performs the following functions: 
It changes the active workspace windows when the user 
requests it. 

H It interprets the meanings (context) of the mouse buttons 
when they are pressed in the active workspace window 
according to a user-definable mouse button map. 

H It sends messages to the current state. 
It manages the state stack. The state stack is an array of 
message selectors for the state objects. 
It makes new states current and terminates others that 
have completed. 

\ 
\ 

/ h 
/ .. 

/ 
\ / 

/ '"X\ / 

Fig. 4. A portion of the HP IVlBuild object hierarchy 

br 

The Current State -9 
There is always a state that is active. This state is called 

Current - 
State 

Root State 4 . . 

Fig. 5. The state stack. 

34 HEWLETT-PACKARD JOURNAL OCTOBER 1990 

\N\N\N HPARCHIVF COM 



I the current state. The current state is always the state to 

the current state to provide a target method for any mes- 
which the state machine sends any messages. It is up to 

sages that the state machine may send it. The target method 
is located either by implementation or by inheritance. If 
no operation is in progress (i.e., only one state onthe stack), 
the current state is the root state. If an operation is in 
progress, the current state is the state that implements that 
operation (e.g., creation of an object such as a polyline or 
widget). 

No state knows which state was current before it became 
current and no state knows which state will become current 
after it ceases being current. These rules were strictly en- 
forced to ensure the black-box nature of each state’s 
methods during design and testing. 

Once current, a state controls the context of the user’s 
input according to a state transition mechanism of its own. 
These state transition mechanisms are called intrastate 
transitions and are controlled entirely by the state itself 
using a local variable called a substate. For example, mov- 
ing forward or backward in a sequence of actions that are 
part of one particular operation, such as creating a polyline, 
is controlled entirely by the state itself. The substate mech- 
anism is described later in this article. 

I 

I 

f 

State Stack Management 
During the execution of HP MBuild the states that are 

activated by the user are organized in a LIFO (last-in, first- 
out) stack (see Fig. 5). The state machine provides a mech- 
anism to suspend operations in progress to do another op- 
eration and then resume the suspended operation when 
the new operation finishes. The state at the top of the stack 
represents the current context of the user’s input and is 
the current state. Only the current state can receive any 
messages. The maximum depth of the state stack is defined 
to be ten states. This is an adequate depth because there 
are other mechanisms in HP MBuild that prevent the state 
stack from growing to a depth of more than three or four 
states. The root state enters the state stack first and remains 
there during the entire execution of HP IVIBuild. Therefore, 
the root state is always in the stack regardless of the depth 
of the stack. 

At each interstate transition, the state machine checks 
the autotermination flags of each state in the state stack. If 
the autotermination flag is TRUE, that state is terminated 
immediately by the state machine and removed from the 
state stack. The state stack is then compacted and the state 
ending up at the top of the stack is started. If the autotermi- 
nation flag is FALSE, only an action by the user can terminate 
the state. 

ZtUSERDATA attribute of the object that received the event, 
which has a pointer to the message selector that, when sent 
to the current state, wiIl cause an interstate transition to a 
new state. The state machine sends the message to the 
current state. This process works the same way for HP 
MBuild user-interface objects and user-workspace objects, 
except that user-workspace objects always send a hit mes- 
sage to the current state. A window created by the user is 
the only user-workspace object that functions like a user-in- 
terface object. A hit message results when a user presses a 
mouse button in a workspace window. 

If the current state can handle the message, the method 
that is called will either return a pointer to the current 
state or a NULL. This pointer is returned to the state machine 
as part of the normal message sending mechanism of the 
HP M object-oriented environment. States return pointers 
to themselves when they want to remain current. This will 
cause an intrastate transition. States return NULL when they 
receive an exit message and want to cease being the current 
state. This will cause an interstate transition. Fig. 6 shows 
a portion of the state transition process. 

Since the root state is the parent of all other states, the 
interstate transition process depends heavily on inheri- 
tance. Each state inherits all the methods from the root 
state. When a state receives a message for which it does 
not have a method, the HP M object-oriented environment 
will search the current state’s lineage (object hierarchy) 
until it finds the target method for the message. In the case 
of an interstate transition, the target method will always 
be found in the root state. The target method in the root 
state returns a pointer via the object-oriented environ- 
ment’s messaging system to the state object that is to be 
made the current state. This is the pointer that the state 
machine compares to the value of the pointer for the current 
state. When it sees that the two pointers are different, it 

Button 
Re’sr80 -b DzState Machine (..., rnrg_selector) 
Event I 

Interstate 
Transition 

State Transition and Inheritance 
As mentioned earlier, an interstate transition is the pro 

cess of making a new state (a state not currently on the 
state stack) the current state. The new state is placed at the 
top of the state stack and started by the state machine. The 
state transition process begins when an event occurs such 
as a button release over an object on the display. The first 
thing to happen is that the state machine function is called 
as part of the normal API callback processing (see page 23). 
The state machine function is passed a pointer to the 

I 
9 MakeNew 1 

State Current 

Intrastate 
Transition 

Fig. 6. The state transition process. 



places the new pointer at the top of the state stack (making 
the state current) and sends a start message to the new state. 
Thus, by inheritance, every state object has the ability to 
activate any other state object. 

When an intrastate transition occurs, there is no change 
to the current state (i.e., the pointers are equal). The current 
state handles the incoming message itself. 

State Protocol 
All states follow a specific protocol that is implemented 

in the state machine of HP IVIBuild. Fig. 7 illustrates this 
protocol. An interstate transition (Fig. 7a) occurs when the 
current state receives an exit message and it returns a NULL 
to the state machine indicating that it wants to cease being 
the current state. The state machine makes the new state 
the current state and sends a start message to the new state. 
The new state remains the current state as long as it con- 
tinues to return a pointer to itself to the state machine (e.g., 
Currentstate in Fig. 7b). Following this protocol allows a 
state to control the meaning of user input within its own 
context. Each state implements or inherits five standard 
methods that constitute its operational interface: start, hit, 
backup, undo, and exit. 
Start. As shown in Fig. 7, the start message is the first message 
a state receives before any other message is sent to the state 
(except exit). 
HW. A state gets a hit message when the user presses a mouse 
button in the workspace window that is currently active. 
HP IVIBuild allows the user to construct and edit as many 
windows as desired but only one can be active at a time. 
To activate another window, the user only has to press a 
mouse button over the window that is to become active. 
Depending on their h~ methods, states are classified as 
either multiaction or single-action states. 

A multiaction state requires the user to select multiple 
points in the active window to perform the operation im- 

Interstate 
Transition 

State 
Machine c 

return (Currentstate) xL3il13 
Intrastate 
Transition 
(Input over b=hP 

Workspace) 

plemented by the state. An example of a multiaction state 
is one that allows the user to create polylines or splines. 
When the user presses a mouse button in the active window 
and a multiaction state is the current state, the action of 
the state is said to go forward. Fig. 8 shows the intrastate 
transition diagram for a multiaction state that translates 
objects. 

A single-action state does not require a hit in the active 
window to go forward. Single-action states can only do 
one thing. An example of this are selections (i.e., states 
that select certain kinds of objects for further operations). 
Once the class of objects that are to be selected is known, 
the objects are selected and no further input from the user 
is required. Any single-action state that receives a hit mes- 
sage is terminated and removed from the state stack. The 
hit message is sent to the the new current state. Fig. 9 
shows the intrastate transition diagram for all single-action 
states. 
Backup. All multiaction states implement backup. This is 
the reverse operation of a hit message because it allows the 
user to cause the action of the state to go backward over a 
previously sent hit. No single-action states implement back- 
UP. 
Undo. All states implement undo. Undo allows the user to 
back a state up to the point right after it received its first 
start. This has the effect of undoing any actions that had 
been performed by the state. Undo may also be sent im- 
mediately after a previous undo to effect a redo operation. 
Exit. A state is sent an exit immediately before its removal 
from the state stack. This allows the state to reinitialize 

start 
-UP 

interstate 
Transition return ( C u m t S t a t e )  

4 return (NULL) I 

[z; State 

-r\ < feu--) 

Fig. 7. HP IVlBuild state protocol. (a) An interstate transition. 
(b) Intrastate transition. 

Fig. 8. Intrastate transition diagram for a multiaction state 
that translates objects. These states are substates of the cur- 
rent state shown in Fig. 7b. 
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itself for its next activation. 

The Substate 
Once current, a state controls its own actions using a 

local variable called the substate. During a sequence of 
operations, the messages start, backup, hit, and undo may be 
sent repeatedly to the current state. These actions do not 
cause interstate transitions. Rather, they cause intrastate 
transitions. The current state does not change but the mean- 
ing of the next input event may have to be interpreted 
differently depending on the sequence of messages the state 
has received since it was made current. The value of the 
substate is changed to reflect the context of the next hit, 
backup, or undo. Note that start is always sent after every 
action whether the action causes an intrastate or interstate 
transition. This is part of the protocol established for a 
state by the state machine. 

Uniformity 
Great care was taken to ensure that the same actions have 

uniform behavior no matter which state is current. The HP 
MBuild team developed guidelines for developing states, 
and intrastate transition diagrams were developed before 
the development of a particular state so that the uniformity 
of actions could be assessed by the whole team. The result 
is a tool with very modular units of functionality that all 
behave in a consistent and intuitive manner. 

The HP IVIBuild User Interface 

HP IVIBuild’s user interface was designed as a collabora- 
tive effort between the HP IVIBuild team members and the 
industrial design department at HP Software Engineering 
Systems Division (see the article on page 39). The objective 
of the collaboration was to design a user interface for HP 

start 
bsckup 

return (CurrentState) Interstate undo 
Transition return (NULL) 

I I :!!a+ 

Fig. 9. Intrastate transition diagram for single-action states. 
These states are substates of the current state shown in Fig. 
7b. 

IVIBuild that was both attractive and intuitive to the user. 
Besides the appearance, HP MBuild is structured to han- 

dle native language support and user customization. One 
other interesting feature is that the HP IVIBuild user inter- 
face presentation is not bound to the functionality until 
run time. 

Native Language Support and Customization 
HP IVIBuild’s user interface conforms to HP standards 

regarding support for native languages and cultures. All 
text that is presented to the user such as labels, prompts, 
and error messages is contained in message catalogs and 
is retrieved by HP IVIBuild at run time. To localize HP 
MBuild, the user only needs to change the contents of the 
catalogs. In general, these tasks are performed by HP per- 
sonnel in the country whose native language is the target 
language. This way, text can be presented with as much 
context sensitivity as possible. Idiomatic nuances of text 
presentation are not lost (as they sometimes are with 
straight translations). 

Another feature of HP IVIBuild’s user interface presenta- 
tion is that colors, tiles, few, mouse button bindings and 
icons can be customized for individual users by modifying 
the X Window System configuration file .Xdefaults. This 
mechanism allows individual users to customize the pres- 
entation of IVIBuild’s user interface to suit their own needs 
(e.g., left-handedness, black-and-white display). 

Presentation and Functionality Binding 
The presentation of the components that make up the 

user interface of HP IVIBuild (i.e., the buttons, menus, win- 
dows, etc.) and the functionality (the states) associated with 
these components are bound together at run time. The func- 
tionality of HP IVIBuild, that is, the result of pressing a 
certain sequence of buttons, is not dependent on the user 
interface presentation. For example, in one user interface 
presentation, drawing a rectangle might be accomplished 
by selecting buttons labeled PI and P2 for the lower-left 
and upper-right corners of a rectangle and typing the coor- 
dinates into a pop-up dialog box. In another user interface, 
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Fig. 10. Binding HP IVlBuild user interface presentation to 
functionality at run time. 
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drawing a rectangle might be a three-button sequence in 
which the user presses the Rectangle button and then clicks 
on the desired coordinates with the mouse. In either inter- 
face, the state operations result in a rectangle. 

The binding of functionality to user interface presenta- 
tion is done when HP IVIBuild starts up. At this time the 
objects [windows, menus, buttons, etc.) that make up the 
HP IVIBuild user interface are restored from a file. Pointers 
to objects (Ztlds) that activate states or send messages to the 
state machine are looked up using the name of the object 
that was assigned when the object was created with the 
API functions. This lookup is accomplished using an API 
function. When the Ztld for an object is returned, the mes- 
sage selector for the state to be activated is retrieved. At 
this point a callback object (ZtCALLBACKOBJ), which will 
call the state machine whenever an event occurs on the 
user interface object, is created for the user interface object. 
Also, the message selector from the state object is made an 
attribute (ZtUSER-DATA) of the user interface object. Once 
the callback object is attached to the user interface object, 
the binding is complete (see Fig. 10). When a specified 
event occurs on a particular user interface object, the in- 
terstate transitions described earlier occur. This scheme 
makes the state machine a callback for every IVIBuild user 
interface object and for every workspace window the user 
creates. 

Separating the user interface presentation from function- 
ality means that the presentation can be developed inde- 
pendent of functionality and the same functionality can be 
easily given a new presentation. New functionality can be 
added and tested in a straightforward way without worry- 
ing about its presentation. 
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Conclusion 
HP IVIBuild was conceived with two objectives in mind: 

to be a powerful, easy-to-use tool to complement the HP 
IVI application program interface functions and to be the 
first API application and as such to provide feedback to 
the API development team. Both of these objectives have 
been accomplished. We believe that HP IVIBuild’s func- 
tionality and designed-in extensibility based on an object- 
oriented architecture are among the first for tools of this 
type. 
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" I  5 , '  Creating an Effective User Interface 

A 

for HP IVlBuild 
The HP IVlBuild user interface was a collaborative effort 
between the software engineers developing the code for 
the product and a group of industrial designers who 
understand the requirements of an effective graphical user 
interface. 

by Steven R. Anderson and Jennifer Chaff- 

-.. I 

MONG THE PRESENT and potential customers for 
HP's computer systems are companies that are in- 
creasingly integrating computers into their manu- 

facturing processes. However, the computer focus of these 
companies is more on solutions than on hardware and 
software development. To help provide these solutions on 
HP computer systems there are efforts within the company 
to encourage or enable independent software vendors 
(ISVs) to develop these software solutions. HP IVI from 
HP's Industrial Applications Center (IAC) is one such effort. 
Its purpose is to help ISVs build graphical user interfaces 
for their applications used in industrial applications. 

Why the need for a graphical user interface? Many of the 
operators and users of computer-based systems in an indus- 
trial environment are not computer literate. They typically 
perform tasks like controlling an automated spray paint 
line, and the interfaces to the tools they use are typically 
knobs, dials, buttons and other physical and visual objects. 
A command line interface is a totally foreign approach for 
these people, and many of them refuse to deal with it. 
Whatever can be done to enable the interfaces to come 
closer to the users' current way of doing things is seen as 
having value. A graphical user interface is seen as having 
the greatest potential in making the interface familiar. Re- 
cent developments in user interface technologies' are very 
suitable for graphical user interfaces in industrial automa- 
tion applications. 

Background 
HP IVIBuild is a tool that enables users to develop graphi- 

cal user interfaces interactively. Therefore, it seemed 
appropriate that it should have a graphical user interface. 
For this capability the HP IVIBuild developers decided to 
use the graphical user interface components that were 
under development at HP's Interface Technology Operation 
(ITO) in Corvallis, Oregon. These components are com- 
monly called widgets2 They include things like menus, 
scrollbars, pushbuttons, text-edit boxes, and radio buttons. 
They are the raw materials from which a graphical user 
interface is assembled. The HP IVIBuild team had no idea 
that using widgets would lead to collaborating with visual 
design professionals. 

Neither did we, the visual design professionals, know 
about the HP M team. We are the usability design and 

engineering group of HP's Software Engineering Systems 
Division (SESD). We are former industrial designers who 
switched our design focus from designing hardware enclo- 
sures to the area of user interfaces, plus one graphic design- 
er. At the time our division was developing what would 
become the HP SoftBench envir~nrnent,~ and we were also 
looking to IT0 for the necessary widgets. Rather than pas- 
sively waiting to see what they might provide, we were 
encouraged by our management to lend our professional 
expertise to the widget development, and IT0 was open- 
minded enough to listen to some of our ideas. 

We didn't begin with any proven graphic user interface 
expertise. We had done some design analyses of the leading 
graphical user interfaces. Also, coming from a background 
in which our experience and training forces us to process 
information visually gave us some ideas about how an ef- 
fective graphical interface should look. And because our 
experience with software and computers was limited to 
being application users, we had some first-hand knowledge 
about the user interface requirements for users who are not 
software literate. 

&Isle Principkr 
Three principles have established the foundation for 

graphical user interfaces in recent years, notably in office- 
oriented applications. The first principle is that it is easier 
for most people to have their alternatives presented to them 
in a manner that allows them to make choices rather than 
having to remember all of the alternatives. Choosing a com- 
mand from a menu is often easier than remembering it. 
The second fundamental principle is that making these 
choices by some means of direct manipulation is often 
preferred over typing in text commands. Pushing a button 
or dragging a file icon into a folder icon or a trash can are 
two examples of direct manipulation. Finally, the third 
principle is to use metaphors from the real world. For exam- 
ple, we know what to do with a pushbutton. 

In our analyses of the many graphical interfaces existing 
today, one of the impressions we formed was how confus- 
ing they could be because of the flat and bland graphics. 
This is especially true in multiwindow environments in 
which there is a high degree of overlapping and the simi- 
larity of the graphic images seems to blend all the images 
together into one confusing mass. We thought that creating 
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greater visual distinctiveness between objects would signif- 
icantly enhance a user's ability to keep things sorted out. 

3D Appearance of Widgets 
Our first attempts to express widgets graphically were 

with the traditional black lines on a white background. To 
get away from the sameness mentioned above, some of the 
widgets were drawn to look three-dimensional and to look 
and act like pushbuttons. It soon became apparent that the 
displays of the future would not be constrained to simple 
black and white, and that larger areas of solid color could 
be used. This was a significant breakthrough. 

With the capability to use color, we added three colors 
to the black and white. By using light, middle, and dark 
versions of a color, we could make a button look very 
three-dimensional. This was achieved by making the top 
and left edges light, the flat surfaces the middle value, and 
the bottom and right edges dark. This technique makes it 
appear as though a light is shining on the button from the 
upper left. Another nice by-product of this technique is 
that by momentarily switching the light and dark colors 
when a button is selected, it actually appears to be pushed 
in. It was so effective that people got a little silly pushing 
buttons the first time they saw a working prototype. 

People intuitively grasp the notion that if something ap- 
pears to protrude, it can be pushed or selected to generate 
some action. Widgets that accept or display inputs appear 
to be recessed. Noninteractive things like labels are flat. 

Scrollbars are hybrids, with a recessed groove containing 
raised controls. Menu bars look like large buttons with 
several labels on them. When the mouse drags over a menu 
item, it appears to raise, transforming itself into a button. 
When a menu item is selected by releasing the mouse but- 
ton, the feedback mechanism is the same shadow reversal 
the pushbutton uses to appear recessed. Fig. 1 shows the 
transition from a total 2D appearance to a full 3D appear- 
ance. 

Most people found this 3D appearance appealing. It be- 
came a key factor in the subsequent adoption of the HP 
widgets by the Open Software Foundation (OSF) for their 
OSF/Motif standard user interface.* 

A New Principle 
The 3D appearance ends up creating a new fundamental 

graphical user interface principle: the visual separation 
and distinction of what we call user space and interface 
space. User space is where the user's inputs go, or where 
the user performs work. Examples are the space provided 
in a word processor for entering text, or the space provided 
in a paint program for creating images. It also includes 
those areas where the user is asked to input data like the 
name of a file. 

The rest of the screen is the interface space, or the visual 
manifestations of the applications and/or the operating sys- 
tem. Included in this category are items like window 
frames, dialog boxes, tool panels, menus, and the metaphor- . 1 
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ical desktop. The interface space, whether controlled by 
the application or the operating system, is where all of the 
3D effect is found. 

In office-oriented applications, which have been driving 
the graphical user interface movement to date, the 2D user 
space is usually dominant in terms of screen m a .  The 
main focus of these applications is 
tool that allows the user to create d 
ments such as mail messages, memo 
overhead slides, and newsletters. B 
tions, the user space is perceived to be the WYSIWYG 
equivalent of some sort of paper document, whether a small 
notepad or a large drawing. It is predominantly two-dimen- 
sional, which is appropriate because the resulting docu- 
ments are also two-dimensional. 

There is an emergence of graphical user interfaces in 
which the interface space dominates because the main 
function of the applications is not document creation but 
some form of process setup and control. Examples include 
things like configuring and running a set of test instru- 
ments, or monitoring and controlling a complex tempera- 
ture control system or an assembly line. HP MBuild is 
geared to create interfaces of this latter type. The 3D widgets 
(or OSFMotif widgets) are particularly well-suited to this 
type of interface because the physical reality they convey 
is much closer to the mental model most people have of 
activities that are control-panel oriented. Fig. 2 shows one 
window for an office-oriented application and another for 
an instrument control panel. 

HP iVlBufld before Redesign 
In the early stages of development, the HP M team used 

the initial version of the widget code from HP’s Information 
Technology Operation. The early results of their using this 
code produced the 3D appearance shown in Fig 3. Unfor- 
tunately the 3D effect was largely lost and the user interface 
was hard to understand. This early result was not a surprise 
because the HP MBuild team had not yet had enough 
experience with widgets and consequently had little notion 
of how to achieve and use the 3D effect. They were also 
unfamiliar with many of the standard techniques and prac- 
tices for creating graphical user interfaces. 

Our group had concurrently been using the 3D widgets 
with our own HP SoftBench tools. That successful experi- 
ence plus the acceptance of HP widgets for OSFMotif gave 
us a certain amount of credibility. As a result we soon 
found ourselves in contact with the HP IVIBuild team. Like 
our experiences with the IT0 team in the development of 
widgets, the HP MBuild people were very open-minded 
in letting us get involved with their product. 

HP MBuild was different for us in that it not only uses 
conventional widgets to create a graphical user interface, 
but it can also create graphic objects that behave like 
widgets. What this means is that buttons and scrollbars 
can be supplemented with graphic representations of ob- 
jects that can change to reflect current status. For example, 
a graphic image of a storage tank can change to show the 
current level of the liquid it contains, or an assembly line 
schematic can be changed to reflect the status of each work 
cell. The output of HP IVIBuild can range from simple 
windows with menu bars and dialog boxes to very complex 

K 
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control-panel-like layouts with animated graphics and 
numerous controls. These capabilities were not obvious in 
the original interface shown in Fig. 3. 

The Structure of HP IViBuild 
The HP MBuild user interface is divided into three parts: 

a utility box, a tool box, and a workspace. 
The Utility Box. This area holds the menu bar, a prompt 
window, several status indicators, and some commonly 
used commands in the form of pushbuttons. 
The Tool Box. This area is like a palette of various graphic 
or widget creation tools. It has three modes: graphics, 
widgets, and models. The graphics mode functions like a 
typical paint program, displaying numerous drawing tool 
buttons as well as mechanisms for displaying and selecting 
items such as colors, patterns, and line weights. The widget 
mode is used for creating and specifying the widgets. The 
models mode is used to get access to models, which are 
templates or libraries of previously created work. Fig. 4 
shows the utility box and tool boxes at an early point in 
the design stage of HP IVIBuild. 
The Workspace. This is the area in which the user does 
the work of building a user interface. In this area graphic 
or widget objects are put together on a kind of three-dimen- 
sional sheet of paper. After assembly, they are stored away 
for use as finished products or as models for reuse or mod- 
ification. For example, a simple dialog box might be used 
as a template for other dialog boxes, eliminating the need 
to start each one from scratch. 

Collaboration 
The early efforts by the industrial designers focused on 

sorting out the functionality found in each of the HP 
IVIBuild areas and then finding reasonable ways of present- 
ing each area. The utility box and the tool box visual layouts 
received the most attention. One of the first steps was de- 
termining the menu structure in the utility box. Certain 
conventions and many examples exist in industry showing 
how applications organize and perform activities like edit- 
ing and filing-for example, the locations of commands 
like cut, copy, paste, and quit in a word-processing package. 
And certain conventions exist in terms of dialog box layout, 
like where the OK, cancel, and help buttons should go. We 
followed accepted general practices wherever possible, and 
tried to develop acceptable solutions where no previous 
models existed. 

The tool box with its various modes was probably the 
most complex job. The final layout chosen for the tool box 
owes many of its approaches to showing status and offering 
choices or functions to existing de facto standards for paint 
programs. There were instances where we were forced by 
technical limitations to deviate from these standards. For 
example, a simple draw tool like the one used to draw a 
rectangle typically requires a decision about whether the 
rectangle is to be filled in or left as an outline. A typical 
solution is to have one button with a rectangle on it, with 
the left half hollow and the right half filled (what looks 
like one button is in fact two buttons). In our case the 
widgets wouldn’t allow that approach, so we ended up 
with a separate button to turn the fill function on or off. 
Fig. 5 shows the design recommendation for the utility and 
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Fig. 2. One window with a typical 
20 office-oriented application and 
the other window showing a 30 
instrument control panel. 

tool boxes at a later stage in the development. 
Colors were another area where the designers had some- 

thing to contribute. We had some color schemes in hand 
from our earlier work on widgets as well as from our work 
with HP's SoftBench product. This greatly simplified the 
tricky decisions required to convey the 3D quality of 
widgets. We provided the color names and RGB values that 
had to be assigned to each widget component to make the 
3D effect work and provide a pleasant overall interface. 

Fonts were also important. Graphical user interfaces in 

dependent on good fonts to be successful. While the popu- 
lar notion of a graphical interface centers on icons, most 

portionally spaced fonts make words work better. The HP 
MBuild team decided to use some display fonts that had 
been created by HP expressly for 3D widgets. These fonts 
provided both behavioral benefits (text properly centered 

general, and the 3D widgets in particular, are very much 

of the work is still done with words, and good pro- 
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Fig. 3. A very early version of 
HP IVlBuild when the design team 1 first began to use widgets. 
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Fig. 4. The visual designers' first 
proposal for the HP IVlBuild user 
interface. 

in widgets, text baselines lined up, etc.) and a consistent, 
high-quality look. 

The designers also created all of the bit maps and icons 
associated with the tool boxes and other aspects of the 
product. One challenge with many of the tool box buttons, 
especially for those in the widgets mode, was to express 
the 3D nature on a small scale and with only two colors. 
The illusion of using three colors was achieved by using 
a light and a dark color and then introducing a dithered 
pattern that the eye blends together to form a third color 
(see Fig. 6). 

The final area of collaboration was to do something visual 
and graphical to help explain and sell HP IVIBuild. Some 
sample screens were created that express how HP IVIBuild 
can actually be used. With just a little prompting on how 

to use the 3D effect, a designer used HP IVIBuild to create 
two sample screens for each of seven potential application 
areas. These compelling images, achieved through the use 
of the actual tool, have done more to explain HP MBuild 
and its capabilities than a volume of marketing brochures. 
One of these sample screens is shown in Fig. 2 on page 8.  

Conclusion 
We learned a few things as a result of this collaborative 

exercise. One is that experts often have problems com- 
municating their concepts and ideas to nonexperts. In this 
case we had two groups of experts. We found that it was 
important to have a main conduit or interpreter between 
the user interface designer and the rest of the software 
team. Without someone to answer all of the questions the 

Fig. 5. A later version of the user 
interface after incorporating some 
of the implementation limitations. 
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user interface designer asks, and interpret the various 
dialogs with the team members, the communication pro- 
cess really breaks down. One designer interfacing with a 
half-dozen individual team members means a half-dozen 
different interfacing styles. 

Another lesson we learned is how important it can be 
to have an early vision of what you are trying to do. Tools 
exist that enable designers to create this vision and user 
scenarios quite quickly. The power and usefulness of these 
visuals should not be underestimated. They are powerful 
catalysts for people’s thinking and communication. Once 
these are analyzed, discussed, and modified, the product 
is better understood by all concerned. Only at this point 
should the interface coding begin. The mistake should not 
be made of bringing the visual design help in at the very 
end to fix up the icons. Chances are the flaws go far beyond 
cosmetic graphics, and at this point the investment has 
been so great that significant changes are nearly impossible. 
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hard" runner and enjoys meeting other HP people 
through her membership in the HPRunning Club. 

i . u 0 ..* 

John U. Frohlich 
As a member of the soft- 
ware development team at 
HPs Industrial Applica- 
tions Center, John Frohlich 
helped develop the HP DIS 
product He joined HP in 
1976atthe company's Op- 
toelectronics Division, and 
helped develop machine 
language programsfor MI- 

culator-based systems to test LED display devices 
He also has worked on several versions of the RTE 
operating system for HP 1000 computers and on 
ATS/IOOO software John received his BSEE de- 
gree in 1963 at the Lucerne State College of Tech- 
nology in Switzerland He is a member of the IEEE. 
Born in Switzerland, he lives in Cupertino, Califor- 
nia, and enjoys mountain hiking, biking, and Iisten- 
ing to old jazz recordings 

73= R, L, C Measurements 

Asad Azh 
Now a marketing account 
manager for HPs Circuit 
Technology Group, Asad 
Aziz was previously in R&D, 
where he worked on the de- 
sign, layout, modeling, and 
electrical model verification 
of the PCX CPU package. 
Before that, he worked on 

b packagingR&Dfor HPPA- 
R,uvw,,,ruLlr-., ,,,,onTABdesignandelectrical 
modeling. Asad joined HPs Colorado Integrated 
Circuits Division in 1985, shortly after he graduated 
from Brigham Young University with a BSEE degree 
in 1984 HereceivedanMBAdegreein1990from 
the Universityof Denver Amember of the IEEE, he 
has coauthored two technical papers on packag- 
ing Born in Lahore, Pakistan, Asad is married and 
lives in Fort Collins, Colorado He enjoys squash, 
bicycling, and windsurfing 

Ravl Kaw 
Ravi Kaw developed a 
methodology to measure R, 
L. and C parameters in 
VLSl packages using coax- 
ial probes rather than cus- 
tom-designed boards 
Since joining HP in 1 W2, he 
has served as a product 
engineer for DRAM and 
math chips and as a 

semiconductor process engineer. and has worked 
on package measurements and modeling re- 
search Before pining HP, Ravi was a lecturer at 
Kashmir University and an engineer at the Jet Pro- 
pulsion Laboratories and Fairchild Semiconductor 
Corp He is the author of 14 technical articles on 
device physics, device modeling, packages and 
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systems, and measurement methods His work has 
resulted in two pending patents on packaging 
structures and systems and measurement methods 
Ravi is a member of the IEEE and the International 
Packaging Society He received his BEdegree in 
1966 in electronics and telecommunications from 
Jabalpur University, his MSEE degree in 1972 in 
microwave solid-state devices from Marquette Uni- 
versity, and his PhD degree in 1978 in solid-state 
electronics, quantum electronics, and microwaves 
from the University of California at Los Angeles 
Ravi is a member of the board of directors of a local 
Hindu communityand cultural center, and aSun- 
day school teacher Born in Srinagar, Kashmir, 
India, heis married, hastwochildren. and resides 
in San Jose, California Heenjoysjogging, garden- 
ing, hiking, and reading 

David W. Quint 
Before Dave Quint joined 
HPs Desktop computer Di- 
vision in 1979, he helped 
design nuclear reactor 
control systemsfor Westing- 
house-Bents Atomic Power 
Laboratories As an HP 
R&D design engineer, ne 
developed tape automated 
bonding (TAB)and pin-grid 

array (PGA) packaging for VLSl circuits He is now 
an R&D engineer worklng on integrated circuit 
packaging at h P s  Colorado Integrated Circuits Di- 
vision Dave's work has resulted in two patents, one 
describing a method of sampling a 1 00-GHz opti- 
cal pulse stream, and another for a method of de- 
positing tungsten for integrated ctrcuit intercon- 
nects HIS profess onal interests include integrated 
circuit process engineering, electromagneric 
fields. circuit analysis, and oprical electronics He 
publfshed a paper in the Journa, of Applied Physics 
whie at MIT, and has coauthored three conference 
papers on electronic packaging He received his 
BSEE degree in 1972 and MSEE degree in 1976 
from the University of Wisconsin at Madison, and 
earned a PnD degree in 1979 from the Massa- 
chusetts Institute 01 Technology Dave served as 
a weather observer in the U S Air Force from 1963 
to 1967, attaining the rankof sergeant Born .n Bar- 
ron. Wisconsln, heis married, hastwoooysand a 
gir , and res des in Fort Col ins. Colorado hls hoo- 
Dies nclude we ght lifting and taking karate lessons 
witn n s children Dave says rhey hold advanced 
be IS in the martial arts. but ne's still working on the 
basics 

Frank J. P a d o n s o  
Frank Perezalonso 
specializes in hardware de- 
sign engineering and 
analog circuit design and 
measurements He joined 
HP Laboratories in 1984 as 
a semiconductor process 
technician. and is now a 
member of the technical 
staff of HPs Circuit Tech- 

I 

nology Group He worked on the electrical charac- 
terization of the high-performance HP 408C PGA 
integrated circuit package In the past, Frank was 
involved in E-beam lithography process develop- 
ment, evaluation and test of HPs membrane probe 
card, and test methods forthe electrical characteri- 
zation of IC packages Before he joined HP, he 
worked on semiconductor processing for Fairchild 
Semiconductor Corp and as an instructor in math, 
physics, and semiconductor processing at Foothill 
College in Los Altos, California He studied 
semiconductor processing at Foothill College, re- 
ceived a BSEE degree in 1985 from the University 
of Santa Clara, and expects to receive his MSEE 
degree in December Born in Managua, 
Nicaragua, Frankis married, has adaughter, and 
lives in San Jose, California He enjoys sports and 
teaching 

78 =Statistical Simulation 

Chee K. Chow 
Manufacturing develop- 
mentengineer CheeChow 
specializes in computer- 
integrated manufacturing, 
manufacturing data bases, 
and analog and microwave 
circuits He joined HPs 
Santa Clara Technology 
Center in 1984 and has 

I done research in statistical 
ctrcuit simulations for clrcuit designs He recently 
rransferred to HPs Microwave Semiconductor 
Division In the past, Chee worked on bipolar high- 
speed circuits at HP, and researched coal conver- 
sions and materials at Washington State University, 
where he receivea his PhD degree in 1974 in phys- 
cal chemistry He also earned an MS degree in 
1984 6n elecrrica engineering from Oregon State 
University Chee is the author of 15 technical arti- 
cles on fuel processing, physical chemistry, and 
e ectronics 

82 =Air Flow Analysis 

Kent P. M1seg.d.s 
As manager of computer 
fluid dynamics applications 
at Cray Research, Inc., 
Kent Misegades collabo- 
rated with HP on airflow 
simulation in the HP 9000 
Model 850 computer. At 
Cray Research, he is re- 
sponsible for all fluid 
dynamics-related applica- 

tions in the aerospace, automotive, metals, elec- 
tronics, and chemical industries. His experience 
also includes work as an aerodynamicist for Dor- 
nier GmbH in West Germany from 1980 to 1984. 
A member of the AIAA, Kent's professional in- 
terests include aircraft design and fluid mechanics. 
He is a graduate of Auburn University with a BSc 
degree (1 979) in mechanical engineering, and has 
anMEdegree(1980) influiddynamicsfromthevon 
Karman Institute in West Germany. Born in Los 
Angeles, California, Kent is married, has three chil- 
dren, and resides in Eagan, Minnesota. His hob- 
bies include aircraft design and radio-controlled 
sailplanes. 

Vivek Manslngh 
Since joining HPs Systems 
Technology Division in 
1987, Vivek Mansingh has 
3erformed research and 
development in thermal 
management of electronic 
equipment in the com- 
pany's mainline systems 
lab Using finite-element 
modeling, he analyzed 

three-dimensional air flow in the HP 9OOO Model 
850 computer Before pining HP. Vivek taught at 
Lehigh Universityfrom 1986to1987 Amernberof 
the ASME, the IEPS, and the CHMT, he has au- 
thored or coauthored 12 technical publications on 
thermal fluids, and is named an inventor on a pend- 
ingpatent.HeearnedhisMSandPhDdegreesin 
1986 from Queen's University in Canada, studying 
mechanical engineering and specializing in ther- 
mal fluids Born in Fatehpur, India, Vivek is married, 
has two children, and lives in Santa Clara, Calrfor- 
nia Heenjoys traveling with his family and singing 
Indian music with a professional group His 
hobbies include jogging, tennis, and badminton 



26.5-to-75-G Hz Preselected Mixers 
Based on Magnetically Tunable Barium 
Ferrite Filters 
A new resonator material-barium ferrite--and a new four- 
sphere design are featured in a series of magnetically 
tunable preselection filters for the millimeter-wave 
frequency range. 

by Dean B. Nicholson, Robert J. Matreci, and Michael J. Levernier 

HE NEED FOR HIGHER PERFORMANCE has driven 
the frequency ranges of systems and components T from the microwave range (under 30 GHz) into the 

millimeter wavelengths (30 to 100 GHz). Moving to higher 
frequencies makes it possible, for example, to increase the 
antenna gain of small reflectors and to improve the spatial 
resolution of imagers. The benefits of the move to milli- 
meter-wave bands are being felt in many fields, especially 
communications, remote sensing, and defense.' 

The spectrum analyzer, a calibrated receiver with vari- 
able resolution, is an important basic tool for testing and 
troubleshooting such systems. Microwave spectrum 
analyzers use advanced technology to provide accurate, 
unambiguous frequency-domain measurements. Hewlett- 
Packard has extended these measurements into the mil- 
limeter-wave bands. 

A new series of preselected spectrum analyzer RF sec- 
tions, the HP11974 Series preselected mixers, makes milli- 
meter-wave spectrum analyzer measurements faster and 
easier by removing image and multiple responses from the 
spectrum analyzer display, thereby eliminating the need 
for complicated signal identification routines. Each RF sec- 
tion consists of a mixer to down-convert millimeter-wave 
signals into the intermediate frequency range of HP micro- 
wave spectrum analyzers, and a magnetically tuned pre- 
selection filter to remove unwanted signals. The preselec- 
tion filter uses barium ferrite resonator material, doped so 
that it starts resonating at the beginning of the waveguide 
band (see article, page 591. 

Table I lists the four preselected RF sections and their 
frequency ranges. Each RF section covers a full waveguide 
band (+20% bandwidth), one of the four standard bands 
from 26.5 to 75 GHz. 

The HP 11974 Series preselected mixers are compatible 
with the HP 8566B spectrum analyzer, the HP8563A port- 
able spectrum analyzer, the HP 70000 modular measure- 
ment system with the HP 70907B external mixer interface 
module, and other HP microwave spectrum analyzers. 
They provide a displayed average noise level at 10-Hz 
bandwidth that is lower than -106 dBm in the A, Q, and 
U bands and lower than -95 dBm in the V band. Image 
rejection is better than 55 dB in all four bands. 

Table I 
HP Millimeter-Wave Preselected 
Spectrum Analyzer RF Sections 

(HP 11974 Series Preselected Mixers) 

RF Section Waveguide Frequency 

HP11974A A 26.5 to 40 GHz 
HP11974Q Q 33 to 50 GHz 
HP11974U U 40 to 60 GHz 
HP11974V V 50 to 75 GHz 

Band Range 

Methods of Extending the Frequency Range 
There are three principal ways to extend the frequency 

range of a microwave spectrum analyzer. The first method, 
shown in Fig. la, uses a classic superheterodyne receiver 
front end. A tracking preselector and a local oscillator (LO) 
both sweep the same frequency span, separated by the in- 
termediate frequency (IF). The preselector prevents spuri- 
ous responses, such as images or intermodulation products, 
from being displayed. The LO must be phase-locked and 
have reasonably low phase noise. To use this method, high- 
Q resonators and active devices maintaining negative resis- 
tance across the full waveguide bands would have had to 
be developed. The design would have been intricate and 
expensive. These technological difficulties eliminated this 
method from consideration for the HP 11974 Series. Fig. 
2 shows where this type of millimeter-wave extender 
would interface with the mainframe microwave spectrum 
analyzer. 

A block down-converter, shown in Fig. Ib, eases the 
local-oscillator problem by using one fixed oscillator per 
band instead of the swept LO of the superheterodyne re- 
ceiver. With this down-converter, input RF frequencies are 
converted to an identical but lower frequency span (swept 
IF). The swept IF can be arranged to be within the range 
of the microwave spectrum analyzer. Even though the res- 
onator and the active devices are operated at a single fre- 
quency, designing for performance and cost still poses a 
formidable problem. Also, this method lacks a tracking 
preselector, so the first mixer is subject to distortion caused 
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Fundamental 

(Fixed) IFOut 
321 MHz 50 to 75 GHz 

Phase 

A 50.32 to 75.32 GHz 

fwle 
Rwnp 

3.54 to 5.33 GHz 

. "  
Tune Ramp 

m. 1. Three types of RF sections for extending the frequency 
range of a spectrum analyzer. The letters A, E ,  C, and D refer 
to Fig. 2, which shows where these RF sections connect to 
the spectrum analyzer. (a) The superheterodyne RF section 
uses a swept pres&ec& and a swept local oscillator (LO). 
?he phass-locked loop is used to set the beginning of the LO 

(6) The block down-converter has a fixed 
LO anda swept intarmediate frequency (IF). (c) The harmonic 
mixer version of the superheterodyne RF section. 

- -  
span of the IF can cause another problem. It requires a very 
wide-bandwidth IF amplifier to improve the sensitivity of 
the microwave analyzer, which is used as avariable IF strip. 

The preselected harmonic mixer version of the super- 
heterodyne front end, shown in Fig. IC, provides a reason- 
able compromise. The preselector protects the mixer from 
spurious responses. The mixer, a harmonic type, uses a 
millimeter-wave harmonic of the existing microwave LO 
in the analyzer. The conversion loss of such a harmonic 
mixer exceeds that of the fundamental harmonic mixer 
shown in Fig. la, but the design effort goes into the preselec- 
tor, which is a passive component and therefore somewhat 
easier to design than a millimeter-wave LO. (Of course, 
once the resonators for such a preselector are available, a 
wideband oscillator m ctiv 
can be obtained.) 

Block Diagram 
The method of Fig. IC was chosen for the HP 11974 

Series preselected mixers. Fig. 3 shows the HP 11974 block 
diagram. The RF signal that ie; to be down-converted to IF 
enters the waveguide flange of the tunable preselector 
shown in Fig. 3, then goes to the isolator and the HP 11870 
Series harmonic mixer. Electromagnets in the preselector 
develop a magnetic field, which tunes the preselector. The 
scaling electronics transforms the tune ramp voltage of the 
spectrum analyzer into magnet current. 
The unbiased harmonic mixer was developed previ- 

ously2 to extend spectrum analysis into the millimeter- 
wave range. If used without a preselector, the mixer can- 
verts the FtF signal to an IF whenever an LO harmonic 
sweeps past the RF. However, the horizontal frequency 
scale is only calibrated for a single harmonic of the LO, 
the 14th for the V-band example shown in Fig. 4a. The 
desired response, the 14+ signal in Fig. 4a, appears as a 
result, as do several unwanted responses resulting, for 
example, from the 12th' lSth, and higher harmonics. 

In the spectrum shown in Fig. $a, the RF input consists 
of several signals from the frequency comb of a multiplier 
with outputs every 5.1 GHz. The unpreselected harmonic 
mixer shows several unwanted responses to each comb 

Harmonic 
Mixer 

21-MHt 

RF Input 
2 to 28 GHz 

W 
sweep 
3amp 

qwp - Generator IA 

Fig. 2. Microwave spectrum ana- 
lyzer block diagram, showing inter- 
face points (A, E, C, 0) with the 
millimeter-wave RF sections shown 
in Fig. 1. 
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I BaFe-Tuned Preselection Filter 

IF Output 
(310 or 321 
MHz) 

LO Input 
(3 to 6 GHr) 

Tune 9 Input 

Delay 
Compensation 

Tempemtun, 
Compensatior ine Line Scaling 

, *  

HP 8563A 

0-HP 70907E 

+ RE 
10 dB/ 

CNVLOSS 
36. 0 
dB 

START 50.0 CHz 
RES BW 300 kHz VBW 30 kHF 

PRESELECTED 

STOP 7 5 0  GHn 
SWP 7.50 

,+ REF 0.0 dBm HARMONIC 14L 

10 dE/ 

CNVLOSS 
45. 0 
dB 

START 50.0 GHz STOP 75.0 GHz 
RES BW 300 kHz VBW 30 kHz SWP 7.50 -PO 

Fig. 3. HP 11974 Series prese- 
lected miilimeter-wave RF section 
block diagram. 

Fig. 4. (a) An unpreselected spec- 
trum analyzer sweep from 50 to 
75 GHz for an input signal consist- 
ing of comb lines from a multiplier. 
There are several unwanted re- 
sponses to each comb line. The 
harmonic responses to the 51- 
GHz comb line are labeled. (b) A 
preselected spectrum analyzer 
sweep for the same input signal. 
The multiple responses are elimi- 
nated and the multiplier comb 
lines every 5.1 GHz are clearly 
displayed. 
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line, thereby producing many responses, most of which 
are unwanted and severely hamper measurements. 

The HP 11974 preselected mixers add a waveguide track- 
:> ing preselector to the harmonic mixer. The resulting V-band 

display is shown in Fig. 4b. Here, only one response occurs 
for each of the five comb lines. 

E"' 
Hexagonal Ferrite Filter Design 

Having decided to design the HP 11974 Series by adding 
tunable bandpass filters as preselectors to the HP 11970 
Series unpreselected harmonic mixers, we looked for the 
easiest way of doing things to make the best use of our 
resources. At the outset, we had decided to use doped 
hexagonal ferrite spheres as filter resonator elements. Their 
built-in frequency offset (see article, page 59) allowed 
us to employ existing YIG tuning magnet designs to cover 
waveguide bandwidths. Because the HP 11970 mixers have 
TE,, waveguide inputs, and because it seemed extremely 
difficult to reduce typical YIG filter loop coupling struc- 
tures (Fig. 5) to the small sizes that would be required to 
make filters for the highest-frequency band (50 to 75 GHz), 
we decided to use TE,, waveguide as the transmission 
medium in our filter. 

The high-frequency (53 to 8O'GHz) barium ferrite filter 
work done by Lemke and Hoppe3 served as a starting point 
for our filter design. Their two-sphere, iris-coupled filter 
used crossed input and output waveguides (Fig. 6)  and 
produced RF magnetic fields in the two waveguides that 
were perpendicular to each other at the iris to reduce out-of- 
band leakage. A linear taper was used to reduce the height 
of the waveguide to allow a smaller gap between the magnet 
pole tips. 

A two-sphere filter was built in U band (40 to 60 GHz) 
to demonstrate the feasibility of the crossed waveguide 
filter approach.4 This filter had typical insertion loss of 4.5 
dB, a 3-dB bandwidth of 325 MHz, and off-resonance iso- 
lation greater than 30 dB. The spheres were aligned on 
beryllia rods, which were slipped into holders that allowed 
k O . 1  mm of sphere adjustment from side to side and up 
and down in relation to the iris. The sphere rods were 
inserted through the reduced-height sidewall of the 
waveguide so that it was possible to center the spheres 
exactly over the iris and to move them closer together or 
farther apart to change the sphere-to-sphere coupling. In 
Fig. 7, the response of this filter is shown centered at ap- 
proximately 48.5 GHz and moved up by 4.5 dB so the 
off-resonance isolation can be read easily off the plot. 

The low-frequency side of the filter's response cuts off 
more quickly than the high-frequency side, and 650 MHz 
away from the peak of the passband the rejection is about 

Fig. 6. Two-sphere waveguide bandpass filter. 

35 dB. The rejection of a filter 650 MHz away from the 
peak is important for preselection applications because the 
IFs used in the HP instruments are approximately 310 A4Hz 
and 321 MHz. An unpreselected mixer will display an 
image signal at the same amplitude as the true signal at 
two times the IF away from the true signal. Therefore, much 
of a filter's usefulness depends on its image rejection, 
which is a measure of how much this unwanted trace is 
suppressed. By adjusting the spheres farther apart or closer 
together, and by changing the iris diameter and the sphere 
size, the best compromise between filter insertion loss, image 
rejection, and off -resonance isolation can be achieved. 

Two-sphere filters were built in the other millimeter- 
wave bands using the information obtained from the U- 
band filter and applying appropriate scaling factors. The 
results for insertion loss and off-resonance isolation for the 
family of two-sphere waveguide filters5 are shown in Figs. 
8 and 9, respectively. The 3-dB bandwidths of these filters 
were 200 to 350 MHz. Although the insertion loss results 
were acceptable, the image rejection and off-resonance iso- 
lation of these filters were not sufficient for instrument 
applications. The goal was then changed to design a filter 
with off-resonance isolation and image rejection greater 
than 55 dB. 

A literature search showed three-sphere and four-sphere 

-15 I \  

RF In 

-40v -45 

IHo 
Fig. 5. A single stage of a typical WG filter. 

-50 1 I I l l  I 1  I I 1  
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45 50 55 
Frequency (GHz) 

Fig. 7. Two-sphere U-band filter response. 
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Fig. 8. Insertion loss of two-sphere filters. 
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waveguide filter designs, but none of them would give the 
required off-resonance isolation at millimeter-wave fre- 
quencies. Our next design consisted of two of the above 
two-sphere filters under one set of magnet pole tips, con- 
nected by a very short transverse waveguide (Fig. 10). This 
four-sphere filter configuration does not increase the mag- 
net pole tip separation, but in theory should double (in 
dB) the insertion loss, off-resonance isolation, and image 
rejection of the two-sphere filters previously built. To 
simplify the mechanical design, sphere mounts were 
machined from low-dielectric-constant plastic and epoxied 
over the irises. Resonator spheres were then placed on the 
sphere mounts, aligned and epoxied in place (Fig. 10). This 
sphere mounting technique allows accurate measurement 
of the sphere separation after mounting to determine 
sphere-to-sphere coupling. 

The one significant difference that was expected in going 
to the four-sphere design was the possibility of the two 
irises and the short transverse guide (one wavelength long 
at approximately 80% of band) forming a coupled-cavity 
bandpass filter that might give a fixed-frequency spurious 

I I I I I I I  I 1  
I I I I I  I 

I \a I 
1 

-70 #I 
0 10 20 30 40 50 60 70 80 90 100 

Yo of Band 

Fig. 9. Off-resonance isolation of two-sphere filters. 

response. When the first four-sphere filters were turned 
on, they gave the expected double (in dB) off-resonance 
isolation, insertion loss, and image rejection, as well as the 
cavity-mode response (Fig. 11). By narrowing the width of 
the input and output waveguides and moving the spheres 
off-center towards the center of the filter, the one- 
wavelength cavity mode can be pushed 5 to 6 GHz above 
the top frequency in the band. The one-wavelength cavity 
mode can thus be eliminated by shortening the transverse 
guide. However, this brings the one-half-wavelength cavity 
mode in-band at about 15% of the band. The one-half- 
wavelength cavity mode is not as strong as the one- 
wavel'ength mode, and can be suppressed very well (Fig. 
12) by introduction of a distributed loss in the transverse 
guide to detune the cavity. This loss is effected by a thin 
sheet of Kapton (plastic) between the sides of the transverse 
guide and the iris plate to allow some energy to leak out. 
The Kapton sheet is shown in Fig. 13, which also shows 
the four-sphere filter assembly. 

Four-sphere filters using scandium-doped barium fer- 
rites as resonators are presently being built in A, Q, U, and 

e 

Fig. 10. Four-sphere filter design. 
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to determine the millimeter-wave frequency to w 
pectrum analyzer is tuned. This voltage is then 
d to a coil current that will tune the filter to the a 

Ref 0.0 dB 

priate frequency. 
To provide the correct current to the filter, 

versus-coil current characteristics of the filte 
into account. The frequency of the bariu 
varies linearly with current, and a straight-line approxima- 
tion is sufficient. For example, a V-band filter typically 

than +go MHz over the entire range from 50 to 75 GHz. 
Small tuning nonlinearities are compensated by using the 
preselector peak function of the spectrum analyzer. This 
function provides a small offset to the tune voltage to peak 
the filter on the signal being measured. 

Because of the internal anisotropic field of the barium 
ferrite spheres, very little current is required to tune the 
filters to the lowest frequency of the band. For all four 
bands, from 26.5 GHz to 75 GHz, the coil current required 
at the lowest frequency is approximately 70 milliamperes. 
The filters then tune to higher frequencies at a rate of 60 
to 70 GWampere. As a result, the widest frequency bands 
require the most current. me A band, with a span of 13.5 

c P 
b? 

- 
r deviates from a straight-line tuning equation by no more 

75 
Frequency (GHz) 50 

Fig. 11. 
resonan 

Ode 

V bands. They typically have insertion loss of 8 to 12 dB, 
3-dB bandwidth of 120 to 200 MHz, image rejection greater 
than 55 dB, and off-resonance isolation greater than 70 dB. 
These performance figures represent trade-offs that were 
made between the different parameters. For instance, by 
mounting the spheres closer together (top to bottom) a four- 
sphere V-band filter was made having 4 to 6 dB insertion 
loss across the band. Unfortunately, because of the tighter 
sphere-to-sphere coupling, the filter skirts were wider and 
the image rejection was degraded. 

Filter Drive Circuitry 
For proper system operation, the barium ferrite filter 

must track the input frequency of the spectrum analyzer. 
The HP 11974 Series preselected mixer receives a tune- 
ramp voltage from the spectrum analyzer that is propor- 
tional to the frequency of the spectrum analyzer’s first local 
oscillator. For any given band, assuming a certain harmonic 
number, mixing sense, and mixer IF, this voltage is suffi- 
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T 

50 
Frequency (GHz) 

75 

Fig. 12. Four-sphere filter response wifh cavity mode sup- 
pression. Fig. 13. Four-sphere filter assembly. 

Transverse 
Waveguide 

Magnetic Center 
Body 

Magnet 

64 HEWLElT-PACKARD JOURNAL OCTOBER 1990 



GHz, typically requires 270 milliamperes of coil current to 
tune to 40 GHz. V band, with a span of 25 GHz, typically 
requires 425 milliamperes of coil current to tune to 75 GHz. 
Coil current is provided by a 50-volt power supply. The 
coil current flows through the filter coil, a transistor that 
controls the amount of current flow, and a 3.10 resistor 
that is used to monitor the current flow, as shown in Fig. 
14. To minimize the temperature dependent tracking er- 
rors, the 3.10 resistor has a low temperature coefficient, 5 
ppmPC, as do resistors in other critical locations. The 
power supply was chosen to be 50 volts to accommodate 
the voltage drops across all of the above items. The capaci- 
tor across the coil shunts unwanted high-frequency cur- 
rents away from the coil. The Zener diode across the coil 
provides a discharge path for the coil at the end of a sweep, 
when the current through the transistor goes to zero. 

The effect of temperature on the filter's frequency is 
another consideration in filter tuning. Some filters, such 
as the Q-band filter, have very little frequency drift with 
temperature, while others, such as the V-band filter, are 
very sensitive to temperature. With a constant coil current, 
a V-band filter drifts at a rate of +11.4 MHzPC. For a tem- 
perature increase of 50"C, the center frequency of the filter 
would increase by nearly 600 MHz. Compensation for the 
temperature drift had to be considered because the 3-dB 
bandwidth of the filter is typically between 120 and 200 
MHz, and this would mean that an input signal would no 
longer be within the passband of the filter. 

Temperature and Delay Compensation 
Temperature drift is compensated by monitoring the tem- 

perature at the filter and modifying the coil current. A 
thermistor network is used to monitor the temperature of 
the filter. The thermistor network consists of a thermistor 
composite composed of two thermistors encapsulated in 
epoxy and two linearizing resistors. The thermistor com- 

posite is located in the waveguide portion of the filter as- 
sembly (Fig. 13) and tracks the temperature at the barium 
ferrite filter. The network has a temperature dependent 
resistance that is linear from 0 to 100°C. The thermistor net- 
work is connected as the feedback portion of an amplifier 
that generates a voltage equivalent to the amount of filter 
frequency correction required. This voltage is then summed 
into the voltage that generates the filter coil current. 

Although the temperature compensation required varies 
from band to band, the filters of each band are very consis- 
tent from unit to unit and across the frequency band. This 
consistency allows the correction to be based on tempera- 
ture only. In the A and Q bands, the filter drifts lower in 
frequency with increasing temperature, while in the U and 
V bands, the filter drifts higher in frequency with increasing 
temperature. 

Fig. 15 shows the frequency tracking errors of a V-band 
filter at O"C, 25"C, and 75°C with no temperature compen- 
sation applied. The frequency tracking errors of the 25°C 
trace represent the deviations from a linear relationship 
between the filter coil current and the filter frequency. The 
spacing between the three traces represents the temperature 
drift of the filter with no temperature compensation ap- 
plied. 

Fig. 16 shows the frequency tracking errors of the same 
V-band filter with the temperature compensation circuitry 
enabled. The remaining frequency tracking errors fall 
within a range approximately equal to the 3-dB bandwidth 
of the filter. The preselector peak function of the spectrum 
analyzer removes these errors at a particular frequency. 

In addition to temperature effects, compensation must be 
provided for the effect of filter tuning delay. When the 
spectrum analyzer sweeps at a fast rate, the filter, tuned 
by the current through a coil with inductance of about 0.8 
henry, tends to lag behind. This effect is compensated by 
placing a differentiator in the HP 11974 tune voltage path. 

Differential 
Amplifier 

lune Voltage 
Error Indicator High-Frequency 

Reference Voltage I LED li -y 

Cornpentiatation 
Capacitor Adjustable 

Galn and 

Tune In 

Spectrum 
Analyzer 

Dependent 
Gain and 

Offset 

Coil 

1 

voltage- 
to-Current 
Converter 

6 Flg. 14. Simplified HP 11974 filter 
drive circuitry. 
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Flg. 15. V-band filter tracking error without temperature com- 
pensation. 

At slow sweep rates, this circuit has no effect. At fast sweep 
rates, additional coil current is provided to help the filter 
keep up with the spectrum analyzer. With this compensa- 
tion applied, the spectrum analyzer can be swept at a 
maximum sweep rate of 40 GHzlsecond. 

Sp8ctrum Analyzer Compatibility 
The HP 11974 Series preselected mixers are designed to 

operate with three families of Hewlett-Packard spectrum 
analyzers: the HP 70000 modular spectrum analyzer family 
with the HP 70907B external mixer interface module, the 
rugged, portable spectrum analyzer family including the 
HP 8560A, HP 8561B, HP 8562A, and HP 8563A, and the 
HP 8566B, a high-performance R&D bench spectrum 
analyzer. Fig 17  shows the HP 11974 Series and the spec- 
trum analyzers. Older models of these spectrum analyzer 
families can be made compatible by installing a retrofit kit. 

To be compatible with the HP 11974, the spectrum 
analyzer must meet certain requirements. First, the spec- 
trum analyzer must have a first LO frequency range of 3 
to 6 GHz at the proper power level. The nominal power 
level of the first LO output is +14.5 dBm to +16 dBm. 
Second, the first IF of the spectrum analyzer must be com- 
patible with the HP 11974. Each spectrum analyzer men- 
tioned above has a first IF of either 310.7 M H z  or 321.4 
MHz. Finally, the spectrum analyzer must provide a voltage 
output that is proportional to the frequency of the first Lo 

Y "2001 -400 

-600 ! 1 I I 1 1 I 1 I I I 1 I I I 

50 60 70 80 
Filter Frequency (GHz) 

Fig. 16. V-band filter tracking error with temperature compen- 
sation. 

of the spectrum analyzer. Each of the three spectrum 
analyzer families has a different definition for the tuning 
voltage provided. Because of this, the HP 11974 has 
switches that are used to identify the spectrum analyzer 
with which it is to be used. For each switch setting, a 
speciflc gain and offset are applied to the tune voltage so 
that the filter will be properly tuned. 

Another requirement for the tune voltage of the spectrum 
analyzer is that it have a variable offset summed in. The 
correct amount of offset to apply at any given frequency is 
determined by the preselector peak function. 

Before operating the HP 11974 with the spectrum 
analyzer for the first time, two potentiometer adjustments 
must be made. These adjustments match the tuning volt- 
ages provided by the spectrum analyzer to the reference 
voltages in the HP 11974. After these adjustments are made, 
the preselector filter will track very well the input fre- 
quency of the spectrum analyzer. The preselector peak 
function is used to eliminate the remaining frequency track- 
ing errors at any given frequency. When executed, this 
function causes the spectrum analyzer to vary its tune volt- 
age to the HP 11974 and monitor the signal level of the 
marked response on the screen. At the maximum response 
level, the filter has been peaked. The frequency range of 
the preselector peak function is proportional to the har- 
monic number on which the mixer operates. For most of 
the analyzers, the preselector peak range is 2260 MHz in 

Fig. 17. HP 11974AIQIUIV pre- 
selected millimeter-wave RF sec- 
tions with mainframe microwave 
spectrum analyzers (HP 8563A, 
HP 85668, HP 7oooO). 
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Fig. 18. Conversion loss calibration chart is supplied with each RF section. The data is entered 
into the mainframe spectrum analyzer. 
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Martini, Mike Brown, and Steve Flint designed the retrofit 
kits vital to the project. Marketing efforts were by Eric 
Brown and Dennis Handlon. Important early development 
work on the filter and test routines was performed by Jim- 
mie Yarnel, Dennis Derickson, Matt Fowler, and Hiroshi 
Imiazumi. Summer intern Davie Zoneraich built the first 
version of the millimeter tracking generator test set. Our 
lab section management, Frank Angelo and Toni Coon, 
endured endless project reviews and kept us inspired. And 
then there is Frank David, who peeled the company’s first 
layer from the millimeter onion a decade ago. 
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Hexagonal Ferrites for Millimeter-Wave 
Applications 
Scandium-doped, M-phase barium ferrite has the 
necessary properties. Crystals are grown and spheres are 
processed and tested in-house. 

by Dean B. Nicholson 

become apparent with the magnetic components used to 
. These problems include electromag- 

e,1 applicable with 
nlinearities, and hysteresis. 

The tuning equation of a YIG sp 
H, parallel to H,, is: 

where H, is the applied dc magnetic field and H, is the 
internal anisotropy field (70 Oe for YIG). Using this equa- 

mum usable frequency of a YIG sphere can 
be calculated to be about &4 GHz, assuming that the material 

has the highest satura- 

of as a built-in magnetic field that acts along a crystal axis, 
or in some cases plane. When the anisotropy field 
is parallel to the field, it gives a frequency offset 
that reduces the applied dr: magnetic field needed for reso- 
nance at a given frequency. 

It was obvious that a new resonator material would be 

118 

1 

10 
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Fig. 1. Ferrite resonance frequency as a function of dc mag- 
netic field for various values of the anisotropy field. 

lters to serve as pre- 

band (50 to 75 GHz). 

would be possible to build magnetically tunable bandpass 
filters that cover waveguide bands in the millimeter-wave 
region using moderate magnetic tuning fields (Fig. 1). A 
class of material with this property is the hexagonal fer- 
r i t e ~ . ~  

PropWm~ of Hexagonal Ferrttes 
Hexagonal ferrites me SO named because this class of 

onal crystal. Hexagonal 
by their phase and composition. For example, M-phase 
barium ferrite is BaFe,,O,,. 

The minimum useful frequencies listed in Fig. 3 come 
from three constraints. First, with the ania;otmpy field 
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Nobw 1. So and Al doping8mnkwri.d oontlnuourly. 
2. Y ph.s~ has phrurr an-. f, = (2.8 M W ~ ) ( H J ~ + H J ) ’ ~  

when the anisotropy plane Is aligned with both dc and RF fleids. 

Fig. 3. Summary of hexagonal ferrite and YIG parameters. 

3 ferrite sphere with the applied magnetic field aligned 
with Ha will not all line up or “saturate” until a field of 
at least 4?rM$3 has been applied. Third, for very high-Q,, 
(unloaded Qt ferrites at low frequencies, such as YIG, with 
fields between one and two times 47rM$3, the effect known 
as coincidence limiting’ limits the amount of power that 
a ferrite device can handle to much less than 0 dBm. There- 
fore, YIG spheres are generally used with applied fields 
above two times 47.rMSB. For hexagonal-ferrite-sphere- 
tuned devices, this power-limiting effect has not been seen 
at power levels up to 20 dBm for our bandpass filter con- 
figurations and thus should not present a problem for this 
application. 

As Fig. 5 shows, scandium and aluminum dopings can 
be varied arbitrarily in M-phase hexagonal ferrites to give 
the desired Ha? The scandium-doped M-phase barium fer- 
rite will satisfy the frequency range requirements at the 
lower frequencies while the aluminum-doped M-phase 
strontium ferrite will satisfy the requirements at the higher 
frequencies. Although it is possible to dope M-phase 
barium ferrite with aluminum to raise its resonant fre- 
quency and dope M-phase strontium ferrite with scandium 
to lower its resonant frequency, in general, the higher the 
doping level the more the Q, of the resonator is degraded. 
Therefore, dopants and materials are chosen so that the 

Flg. 4. Uniaxial anisotropy in hexagonal ferrites 
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least amount of dopant is used to cover a given 
range. 

Other desirable propedes of M-phase hexagonal ferrites 
are that they have high 47.rMB/3 for good coupling to the 
RF fields, high Curie temperatures for low sensitivity to 
temperature change, and fairly high Q,. 
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Fig. 5. Anisotropy field changes with doping. Adept& with 
permission from reference 4. 
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Sphere Production and Test 
Once the selection of the M-phase hexagonal ferrites was 

made and it was found that crystals were unavailable com- 
mercially, a crystal growth program was begun at the HP 
Microwave Technology Division. In the literature, hexag- 
onal ferrite crystals are typically grown from a BaO/B,O, 
flux using slow cooling. We used a slow cooling furnace 
with multiple small crucibles per run and free nucleation 
(no seed crystals) for quick optimization of charge compo- 
sition and temperature profiles. Now that growth condi- 
tions have been optimized, a single larger crucible is used 
for each growth run with a larger charge so that larger 
crystals can be grown. The total volume of liquid charge 
in the crucible at the start of crystal growth is approximately 
320 ml. The total weight of crystals obtained from the 
growth is about 70 grams. 

The processing of hexagonal ferrites to spheres is concep- 
tually very similar to YIG sphere processing. Because of 
the brittle nature of hexagonal ferrites, proprietary grinding 
and polishing techniques had to be developed to avoid 
chipping the sphere poles. In addition, a separate sphere 
testing system was developed to test the Q, of the hexagonal 
ferrite spheres, which must be tested at the millimeter wave 
frequencies at which they will be used. 

Summary 
Because of their high magnetic anisotropy fields, spheres 

made of suitably doped M-phase hexagonal ferrites were 
chosen as resonator elements in magnetically tunable 
bandpass filters. These bandpass filters cover waveguide 
bands above 26.5 GHz and are used as preselectors in the 
HP 11974 Series of millimeter preselected RF sections. 
When no outside supplier of hexagonal ferrite spheres 
could be found, crystal growth and sphere processing and 

test capabilities were developed in-house. 
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facility that includes a high-level Protocol Specification 
Language, a testing facility, and a run-time facility for device 
interfaces that run in an HP-UX environment on HP 9000 
computers. 

by Kent L. Garliepp, Irene Skupniewicz, John U. Frolich, and Kathleen A. Fulton 

requiring a fairly high level of expertise. The pmcem gen- 
erally consists of characterizing the device’s communica- 
tion protocol and then writing, changing, or enhancing 
programs, subroutines, and test suites. This process is well- 
known to all interface developers and c 

communications standards, 
utomation Protocolz IhlzBg), 

ice connectivity problems 
1 improve significant- 

ly. In the merurtime, many factory-floor devices exist and 
have long useful lives remaining. Many are simple devices, 
such as gauges with simple interfaces, that may never con- 
form to a standard. 
To reduce the cost of developing customized interfaces 

for devices that need them and to shorten the time required 
for such efforts, tools are needed to simplify the develop- 
ment and testing of the interfaces. This is the objective of 
the HP Device Interface System (HP DIS). HP DIS is a toolset 
that helps developers create and test interfaces between 
computer applications and RS-232-compatible factory- 
floor devices in less time than before. The resulting inter- 
faces run in an HP-UX environment on HP 9000 Series 300 
or 800 computers. 

HP DIS offers three facilities to make the development 
and implementation of device interfaces more efficient. A 
development facility provides a high-level Protocol 
Specification Language3 for defining the communications 
logic. A testing facility provides a test generator, a test 

exerciser, and a device simulator. A run-time facility exe- 
1 shows a typical pro- 
of the HP DIS toolset. 

8WKWC3 Corresponding Steps Using HP DIS 

Understand application needs. 

Understand device communication 
protocol and message formats. 

Design protocol interface 
architecture, functionality, and 
modularity. 

Write application calls to protocol 
interface. Create protocol interface 
using the Protocol Specification 
Language. 

Tests 

Create tests using the HP-DIS test 
facility. hI 

Define the configuration and 
execute the protocol interface modules. 

Fig. 1. The process of creating a device interface. 
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HP DIS system. The input to the compiler is a description 
of the device protocol, written in Protocol Specification 
Language (PSL). PSL allows the user to describe a state 
graph and its associated state table in a high-level format 
(see “Finite State Machine,” page 65). 

Other inputs to the development facility are subroutines 
that can be linked to the protocol interface. In HP DIS these 
are called action routines (see “ActionRoutines,” page 69). 

The run-time facility provides the execution environ- 
ment for the protocol interfaces. When the protocol inter- 
face runs, it communicates with ports, other protocol inter- 
faces, and other C programs through HP-UX message 
queues. Using a description of the protocol interface’s as- 
sociated I/O ports, the run-time facility manages the ports, 
message queues, process startup, and process shutdown. 

State Tables.-q -vocumentation A Generator 

Autogenerated 
Test Cases User-Written 

Test Cases 

+Test Results Protocol Interface 

Fig. 3. HP DlS testing facility. 

Specify 

Protoco 
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Step 1: 
Describe 

the 
Interface 

HP-U., 
Testing 
Facility 
Process 

Step 3: 
Test 

Represents an HP-UX 
Message Queue 

Fig. 4. Steps in protocol interface development using HP DIS. 

The development and run-time facilities also provide 

A contributed library of example protocol interfaces, 
tutorial protocol interfaces, and other helpful tools . The ability to implement user-defined lookup tables . Eight-bit native language support . Access between multiple devices and multiple interfaces . The ability to add and delete protocol interfaces dynam- 
ically in a running system. 
A diagram of the HP DIS testing facility is shown in Fig. 

3. This facility consists of a test generator and a test exer- 
ciser. 

The test generator takes the state table and creates test 
cases. The test cases are fed to the test exerciser, which 
executes each test case by sending messages to the protocol 
interface under test. The test exerciser attempts to achieve 
each state listed in the state table, for up to 100% coverage. 

Optional inputs to the test exerciser are user-written test 
cases. The test exerciser executes a sequence of test cases 
and compares expected results to the results of the protocol 
interface under test. Actual devices or VO ports are not 
necessary for testing; factory-floor devices can be simulated 
by describing their messages. 

The output of the testing facility includes test case 
documentation and test results. The testing facility also 
provides the following features: 
9 Full or partial data tracing 

the following features: 

Either menu-driven execution or script execution of test 
cases . Protocol filters to simulate garbled messages, time-outs, 
and expression matching . Notification of percentage covered. 
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An HP DIS Example 
There are three steps in developing an interface (see Fig. 

4). The first step is to describe the interaction between the 
application and the factory-floor device interface. The sec- 
ond step is to specify the device protocol in a language 
that HP DIS can compile. The third step after successful 
compilation is to generate the test scripts and test the logic 
of the developed interface. These steps are illustrated by 
the following example. 
Describing the Interface. A block diagram of the system 
interfaces for this example is shown in Fig. 5. The interface 
between the application and the device interface is an HP- 
UX message queue. Read and write subroutines are avail- 
able for the application program developer to send buffers 
to the device interface and receive buffers from it. These 
subroutines allow referencing either the HP-UX message 
queue name or the device application name. The links 
between the HP-UX message queues and the device inter- 
face are established by the run-time facility through a con- 
figuration file (Fig. 6). The configuration file is used by the 
run-time facility to establish the queues, start the defined 
interfaces, the links, and configure the ports from 
the port definitions. The configuration process eliminates 
the need for a detailed understandfng of HP-UX inter- 
process communication and RS-232 serial port initializa- 
tion. 

The buffers passed through the queues must be designed 
to carry the information needed by the device interface. 
The device interface can require the application to pass 
device-specific data directly or can translate generic func- 
tions into device-specific data. Device interfaces can range 
from very device dependent to completely device indepen- 
dent. In the latter case more logic will be required in the 
device interface. 

For the sake of simplicity, this example uses the device 
dependent approach. The application outbound buffer con- 
tains a six-byte header and a variable-length data string. 
The application inbound buffer contains a status byte and 
a variablslength data string. 
Specifying the Protocol. One of the methods of specifying 
the protocol is a transition diagram 
diagram. This 
protocol into HP DIS can compile. Figs. 7a and 
7b describe a diagram and a state diagram for a 
nontrivial protocol. This example protocol is based on the 
Allen-Bradley Data Highway I protocol, but only exempli- 
fies the major features. This example assumes synchronous 
communication. No new request is sent from the computer 
to the factory-floor device until a previous request is satis- 
fied. 

The computer sends a message (MSG) to the device (Fig. 
7a) and waits for an acknowledgment fromthe device (ACK). 
The computer then waits for a reply message (Fig. 7b). Each 
message consists of block control characters, a header, and 
data. In the case of a read request, the data field from the 
computer contains the address and the length of the re- 
quest. The reply data from the device consists of the values 
requested. In the case of a write request, the data field from 
the computer contains the address and the values for the 
request. The reply data from the device consists of an inter- 
nal status for the request. 

In the event of a communication failure, either the com- 
puter or the device can reply with a failure message (NAK). 
The protocol interface must also recognize that no response 
(TO) is a failure. Other failure mechanisms are not taken 
into account in this example. 

PIDEFINITIONS 

n 
Appllcatlon 

A 

Factor-Fluor 
D&ce Int.rha 

FIFO 
Queues O3 

Fig. 5. System interfaces for HP DIS example. The queues 
are HP-UX message queues. 

PORTDEFINITIONS 

PorLName 
PoltMajor-# 
PohMinor-# 
BaudRate 
Character-Size 

Parity 
StCQEi 
ReafLTyp 
OutputQueue 
InpuLQueue 

= A B  
= 1; 
= 4; 
= 9600; 
= 8; 
= N; 
= 1; 
= 5 x 4 0 ;  
= Q2; 
= lx(DeviCe_ac); 

QUEUEDEFINITIONS 

Fig. 6. Device interface configuration file. 
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Finite State Machine 

The finite state machine model has been used in such diverse 
disciplines as computer design, neurophysiology, linguistics, au- 
tomata theory, and communications.‘ The finite state machine 
model is a natural way to describe systems that process signals. 
This model is particularly convenient for specifying how mes- 
sages are processed in device protocols. 

Two standard representations used to describe a particular 
finite state machine are the state table and the state diagram.* 
A state table uses one row for each state and one column for 
each input. In each box are written the next state and the output. 
The first row of the state table is usually assigned to the initial 
state of the machine. 

A state diagram is a directed graph in which each arc is labeled 
with the input that causes the transition and the output that is 
generated when the transition is triggered. 

A classic example is a parity checker. This machine takes an 
input stream of bits of ones and zeros. For each input bit the 
machine produces an output indicating whether the entire input 
sequence so far has even or odd parity. The state table and 
diagram are shown in Fig. 1. 

The HP DIS state table, written in PSL, is shown below. The 
initial, or home, state is have-even. When an event is triggered by 
the receipt of a 0 or 1, the protocol interface prints a message 
using the user action routine called UI. 

Events 
zero-recd : response : 0; 
oneJecd : response : 1 ; 

States 
have-even : Home; 

State-Table 
have-even : zero-recd : 

Ui  (“print even“) 
: have-even; 

have-even : one-recd : 
U1 (“print odd) 
: have-odd; 

have-odd : zero-recd : 
U1 (“print odd’) 
: h a v e - e  

have-odd : one-recd : 
U1 (“print even”) 
: have-even; 

State Table 

zero-recd one-recd 

have-even have-even, “print even” have-odd, “prlnl odd’ 

have-odd have-odd, “print odd” have-even, “print even” 

State Diagram 

zero-recd, “print even’‘ zero recd, “print odd’ 
one-recd. “print odd” h 

P -  i r- 
have-em 1 

b- A -L- 
one-recd, “print even” 

Fig. 1. State table and state diagram for a parity checker. 

ReterenWS 
1 P Denniq. J Dennis, and J Qualitz. Machines, Languages, and Computation. 
Prentice-Hall, 1978 
2 A S  Tanenbaum, Computer Networks. Second Edition. Prentlce-Hall, 1988 

Figs. 7a and 7b show state diagrams derived from the 
transition diagrams. The states and events form the logic 
of the protocol interface. Actions (or funciions) are per- 
formed at each state-event pair. Fig. 7a also shows an event 
(retry exceeded] that i s  not  supported by the transition 
diagram. This event i s  added to prevent endless looping. 

A message from the device to  the computer (Fig. 7b) will 
cause a reply message event, wh ich  wou ld  normally return 
directly to the IDLE state. This example will check the integ- 
rity of the byte stream by checking the BCC (block control 

character] count and branching to an extra state (CHECK). 
If the BCC count was incorrect, the original message wil l  
be sent back to the devioe. If the BCC count was correct 
the message from the device wi l l  be returned to  the appli- 
cation. The combination of the IDLE state and the reply 
message event is  included in case the device sends a mes- 
sage after time-out processing. I f  this were not included, 
the wrong message wou ld  be extracted from the HP-UX 
message queue during the next transaction. The message 
from the device is  simply acknowledged and ignored. 
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State Event 
IDLE Send message 

IDLE Reply message 

WAIT ACK 

WAIT NAK 

WAIT Reply message 

WAIT Time-out 

WAIT Retry exceeded 

CHECK Message OK 

CHECK Message not 
OK 

TSMO I 
Actions List 

Actions 
Read message from application 
Build outgoing buffer from 

Send message to device. 
Clearretry count. 
Increment message number. 
Start timer. 

incoming buffer. 

Read message from device. 
Send acknowledgment (ACK) 

to device. 

Stop timer. 
Read message from device. 
Start timer. 

Stop timer. 
Read message from device. 
Resend message to device. 
Increment retry count. 
Start timer. 

Stop timer. 
Read message from device. 
Check block control character 

(BCC) 

Stop timer. 
Send no response message to 

application. 

Stop timer. 
Send communications error 

message to application. 

Send acknowledgment (ACK) 
to device. 

Send reply data to 
application. 

Send acknowledgment (NAK) 

Increment retry count. 
Set timer. 

to device. 

Next 
WAIT 

State Diagram Tm8ition Diag&m 

Computer Devieo 
I 

Time-Out 

L-.-l- 
Retry Exceeded 

TIDLE 1 
II 

IDLE 

WAIT 
(a) 

State Diagram 

WAIT 

7 

. IDLE A 
CHECK 

WAIT 

IDLE 

IDLE 

WAIT 

The state diagrams of Figs. 7a and 7b are combined into 
one state diagram in Fig. 8. 

The actions to be performed at each state transition are 
listed in Table I. With some additional declarations this 
table can be transformed into a Protocol Specification Lan- 
guage (PSL) program that can be compiled. Previous deci- 
sions about the form of the messages from the application 
can be incorporated into the data structures. 

Fig. 9 shows the PSL program ready for compiling and 
testing. The compiler not only checks the program syntax, 
but also tests the reachability of all states frondto the hame 
[IDLE) state. This check ensures that there are no incomplete 
paths. 

I -""-.i 
TO = The-Out 

or No Response 

Transition Diagram 
Computer Device 

TO = TimeOut 
or No Response 

Fig. 7. Transition and state diagrams for a nontrivialprotocol. 
(a) Message from computer to device. (b) Message from 
device to computer. 

r 

IDLE 

1 

WAIT 

Message 

: I  

Fig. 8. Protocol state machine state diagram obtained by 
combining Figs. 7a and 7b. 
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Matching Messages 

One of the most powerful features of HP DIS is the matching 
process. It IS used for three purposes: for determining whether 
a message matches a request event or a response event, for 
parsing a message into a structure, and for delimiting streams 
of characters from a port. Each use is slightly different from the 
others, but they all have the same matching characteristics. 

Through the PSL struct description, the user defines the fields 
in a structure that are to be matched. All variables describe a 
length of data. When a structure contains a variable, the data 
from the message is placed into the structure according to the 
length of the variable. Byte and Boolean variables are one byte 
long. Integer variables are two bytes long, and real and long 
variables are four bytes long. String variables can be NULL or 
up to 4K bytes long. Data from the message is parsed into the 
structure’s fields according to the variable lengths. 

Constants and literals are matched exactly. The lengths of 
data types are the same as above, but the message data must 
contain the bit pattern that matches the constant. Constants or 
literals adjacent to string variables are used for delimiting the 
strings. 

The HP DIS compiler builds a table for each structure describ- 
ing data in each field. The matching process then walks this 
table for each structure. If there are no string variables in a 
structure, then each byte is easily assigned to a structure field. 
There is no ambiguity. However, if there are any string variables 
in the structure, then ambiguity branching begins, because string 
variables can be NULL or up to 4K bytes long. The matching 
process branches, assigning this byte to both the string variable 

and to the next field. This ambiguity is resolved either by the 
next constant or by the end of the message. 

HP DIS makes the first shortest match, unlike the HP-UX editor 
vi, which makes a first longest match. For example, if the fields 
in a structure are: 

variable string strl 
constant byte bt1 = B 
variable string str2 

and the message received is: 

aabbBddBd 

HP DIS uses a first shortest match algorithm to parse this as: 

strl = aabb 

str2 = ddBd 

btl = B 

vi uses a first longest algorithm. The vi command typed in as: 

s/ \(.Y)m(.Y)/strl =\l stR=\2/ 

would result in strl and sir2 matches as: 

strl =aabbBdd 
str2 =d 

appear in several data files: ReplyAck and Reply?&& a 
internal events 

and variables. 

eded results, the 

to  trigger external 
or device) by creat- 

description of the data 
case executed by the t 



Environment 
R u n t i m e m e  
device 

constants 
Read 
Write 
A p p l i a d - Q  
npplic-wIte-Q 
DeViceJead-a 
D&X-WtitLQ 

Increment 
Stahtlmer 
Stop-timer 
By-me 
Calculate 
check 
D E  
STX 
ETX 
ACK 
NAK 
WRetry 
NoRespon= 
HP-ID 
ComEtmr 
StatusOK 

TimeOutVal 

= Devicex; 
= Highway: 

= 1 ;  
= 2; 
= 1; 
= 2; 
= 3; 
=4; 
= 1 ;  
= 1;  
= 2; 
= 1 ;  
= 1; 

= 2  
= 1Oh; 
= M; 
= 3h; 
= 6h; 
= 1%; 
= 5; 
= 201; 
= a; 
= 202; 
= 0: 

= moorim*/: 

/‘ Maxnumberofretries 
r Time-outreturnstatus 
r Deviceidenlifer 
r Rehyexceeded 
r Me88agesentoK; 
r returnstatus 
r TOvalue = 1 s; 
r test = 30s 

Variabkrs 
byte RetryCount = 0; r Retrycwnter 
byte bcc; r Protocolblockchedtchr 
byte status = 0; r ~rotocdstatus 
byte dst = 10; P Pmtoccldestinalbndm 
byte sw =o ;  r ~rotoooi~mdevice 
byte cmd = o ;  r ~rotocolmmsnd 
b y t e -  = 0; r PIVWXWWS 
integer tns = 1 ;  /+ Protocolmesssgenumber 
string data 
byes -it; r DummybrDclO 
boolean eccFbg =TRUE r ~unotionfor6~~chack 
IOW Timeperiod =o; r Timervalue 
strhrs Text 

P Datablock - I I. 

- - I I. r Bitbucket 
r s b u c t u r e s u s e d t o m a t c h ~  */ 

stfuct ReplyAdc = (DLEACK); 
struct ReplyNak = (DLENAK); 
struct DataPacket = (DLESTXdstsrcand-tnsdataDLEETXbcc); 
shuct ReqPacket = (dstcmddata): 
sttuct Replypacket= (statusdata); 

Events 
r Event:  vent TW,  vent definition *I 

sendmessage:requesl, ReqPadmi; 
replymessege: response, DataPacket; 
ACK response. ReplyAok; 
w. response, ReptyFlak; 
timeout: internal, TimePeriod >= TimecutVal; 
retry-exmaM: intemaJ, FmyCmntr=MaxRetry; 
msg-ok: intemal. BccF!ag==TRUE 
msgndc: internal, BccFlag==FALSE 

IDLE HOME; P Homestate */ 
states 

State-table 

IDLE sendmessage: 
DclO(Read, Appliweaclo. ReqPacket, , , Result)/ 
r START Build wtg01ng buffer */ 
DcMove(ReqPacket.dst, DataP&et.dst)/ 
DcMove(HPJd, DataPa&et.src)/ 
DcMove(ReqPacket.and. DataP&et.and)/ 
DcMove(StatusOK, Datapackat.&)/ 
DcMove(tns, DataPacket.tns)/ 
DcMove(ReqPa&etda DataPacket.data)/ 
DcCksurn(Calcul&, DataP&eLdata, “BCCAB”, DataPacket.bcc)/ 
r END EWM outgoing w e r v  
DcO(WtW, Devics_wMe_o, Datapadat,, , Resuit)/ 
-at Rebycowrt)/ 
Dccntr(lnCmment, tns, By_one)/ 
lkClock(staRfimer. TimePerlod. TimeOutVal) 
:WAIT; 

Dclo(Read, DevicemadB. Text., , Resuit)/ 
Dclo(wme, Device-WtW-Q. RepIyAtA. , , Resuit) 
:IDLE 

WATT: ACK: 

IDLE replymessage: 

~cclodt(st~p-timer, T i m e w ) /  
DclqRead, D e v k e d Q ,  Text, , , Resuit)/ 
DcClodr(starttimer, TimePerrod, TimeoutVal) 
:WAm 

WATT: NAK 
D C C ~ ( ~ t i m e r ,  Timeperiod)/ 
DclO(Read, D e v i c e ~ ~ & Q ,  Text. , , Resutl)/ 
DclO(Wdte, Device-Write-Q, Datapacket, , , Resuit)/ 
DcCntr(lment, Retrycwnt, W-cW 
DcCbck(Starltlmer. TimePerkd, Timeoutvsl) 
:WAIT; 

Dcclodt(stopflmer, Timeperiod)/ 
DclqRead, MAQ, Datapadcet., , Resuit)/ 
D c C k s u m ( m  DataPadcetdet, “BCCAB”, DataPadcet.bcc, &Flag) 
:CHECK 

WATT: tlmeout: 
DcCl&(Stop-tImer, TimePw)/ 
DcMove(NoResponse, ReplyP&et.status)/ 
DclO(Write. Applic_Wme_Q, ReplyPacket, , , Result) 
:IDLE; 

DcCW(Stqfimer, Timeperiod)/ 
DcMwe(CmError, ReplyPacket.status)/ 
DclO(Write, Applio-wdte-Q. ReplyPadcet,, , Resuit) 
:IDLE; 

WATT: replymessage: 

WATT: retry-exceeded: 

CHECK msg&: 
Dclo(wfite, Dwic~-Write-Q, ReplyAtA, I I ResuttV 
DcMove(StatusoK, ReplyPacket.status)/ 
DcMove(DataPacket.data, Replypadret.data)/ 
DclO(Write, Applk-mite-a, ReplyPacket, , , Resun) 
:IDLE; 

Dclo(WrIte, Device-write-Q, ReplyNak, , , R e e W  
Dccntr(lncrement. Retrycount, W-cne)/ 
DcClock(Stacttimer, TimePeriod, TimeoutVal) 
:WAIT 

CHECK msg-nok: 

Fig. 9. PSL (Protocol Specification Language) protocol program. 



Action Routines 

HP DIS is shipped with a wide variety of routines to ease the 
creation of protocol interfaces. If a required action routine cannot 
be found in the HP DIS action routine library, the user can write 
a user action routine. 

A protocol interface consists of two components: a finite state 
machine and its corresponding internal tables. The finite state 
machine is customized for the HP DIS and user action routines. 
The internal tables are: 1) an identifier table consisting of con- 
stants and variables, 2) an event table consisting of event IDS 
and event expressions, and 3) a state table consisting of current 
state ID, event ID, action list, and next state ID tuples. 

In the state table, the action list specifies HP DIS action routines 
or user action routines. Action routines operate on the variables 
in the identifier table. HP DIS provides a header file, DcTypes.h, 
which can be used by user action routines written in the C pro- 
gramming language to simplify parameter passing. 

The HP DIS-supplied action routines are listed below 

DcBufMod 
DcCksum 
DcClock 
DcCntr 
DcConvert 
DcDelay 
DcEncode 
DcExit 
DcFlag 
DclO 
DcLogAdAB 
DcMove 
DcScan 
DcTablnit 

Buffer modification 
Checksumming 
Timer 
Counter 
Data conversion 
Delay 
Data encoding 
Terminating the protocol interface 
Flag setting 
InpuVoutput 
Address builder 
Move 
Data scanning 
Table initialization 

DcTabScan Table scanning 
DcBufMod Buffer modification 

An Example 
The HP DIS action routine DcClock activates or deactivates a 

time counting facility. Timer counters are caller-supplied HP DIS 
variables. The HP-UX system interval timer ITIMERREAL is used 
to update the time counters in real time. A SIGALRM signal is 
delivered when the system interval timer ITIMERREAL expires, 
and all active timer counters are updated. Updating a time 
counter can trigger an event if the timer counter exceeds a 
specified time-out value. In the following example the event Time- 
Out is triggered when time-counter is greater than 60000 (60 sec- 
onds). 

Variables 

Events 

State-Table 

long time-counter; 

TimeOut : internal, time-counter > 

... 

... 
DcClock(1, time-counter, 1000) 
... 
... 
Idle : TimeOut : 
DcClock(2, time-counter) 
: Idle; 

... 

... 

6oooO; 

i' Start time counting ' i  

i' Time-outdetected '/ 
i' Stoptimecounting ' i  

messages, state-event pairs, and values of a l l  variables after 
every action associated with each state-event pair. The vari- 
able values are useful for checking the results of actions 
even when the correct path is  executed. 

This example has shown that by using tools and a subsys- 
tem approach, a factory-floor device protocol can be mod- 
eled and produced. 

Configurations 
Fig. 15  shows various configurations for HP DIS-built 

interfaces. Interface schemes can use a single protocol in- 
terface or mult ip le protocol interfaces. These protocol in- 
terfaces can be stacked in series or configured in parallel. 
When mult ip le devices are serviced, even more choices 
can be made: each device can be serviced by i t s  o w n  dedi- 
cated protocol interface, or mult ip le devices can be ser- 
viced by a generalized protocol interface. 

Fig. 15a shows the simplest configuration. Here, one pro- 
tocol interface handles one port and one device. 

Fig. 15b shows three protocol interfaces that work to- 
gether. Message processing that i s  common to a l l  ports i s  
done in the lower-level PI1. The message is  passed to the 
upper-level PI2 and PI3 for device-specific processing. For 
example, PI1 can collect a l l  messages from mult ip le de- 

r Time-Stamp: 608506312 */ 
r Run-Time Name 
RuntimeName Devices 

State Table File Name */ 
/usersitesVDevices.st; 

r CASE 1 ; */ 
/* Gwd */ 
r state Command */ 
r IDLE 
/' Endof- */ 

WURA w12wx) '; */ 

r ECASE IDLE WAIT sendmessage; *I 

r CASEP; */ 
r oood *I 
/* state Command */ 
1. IDLE 
r uK)1\020\003UXM'; */ 

WLRA 1 M 0 \ 0 0 2 1 0 1 2 * /  

r EM~~CZSSV 
r ECASE IDLE IME replymessage; */ 

CASE 3: 
r stete Command */ 
IDLE WURA 1012wx)'; 
WAIT WLRA .v2owo6'; 
r EM of  cas^ */ 
ECASE WAIT WAIT ACK 

CASE 4; 
r s m  Command */ 
IDLE WURA U)12\M)o'; 
WAIT WLRA WZCWJ25'; 

ECASE WAIT WAIT NAK; 
r EM of - *I 

Fig. 10. Action command file. 

I 
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Fig. 11. Testing interfaces. 

vices, perform checksums, and pass them to the next level. 
This ensures that all messages are acknowledged promptly 
by a dedicated protocol interface, while less time-critical 
functions are handled by separate protocol interfaces. 

Fig. 15c shows three protocol interfaces, each dedicated 
to a port. Device-specific message processing is done for 
each port. The upper-level PI4 directs and organizes mes- 
sages before passing them up to the application. 

A developer can choose where to put common functions. 
The performance will be slightly better when the number 
of protocol interfaces in serial is smaller, since fewer mes- 
sages are passed between processes. On the other hand, a 
centralized function may be desirable because it simplifies 
the system design. 

Performance 
An HP DIS system is easier to construct than a similar 

application in C code, but this is achieved with some loss 
of performance compared to C code. In an HP DIS system, 
functionality is split across five (or more) separate HP-UX 
processes. In C code, all the functionality could reside in 
a single process. For example, HP DIS port management is 
handled by separate read and write port processes with 

PI-DEFINITIONS 

RuntimeName = Devicaac; 
Runtime-Typa = T; 

Runtime-Name = PMDPSS; 
Runtime_File_Name = /usr/bin/PMDPSS; /* Device Simulator */ 
Runtime-Typa = T; 

QUEUEDEFINITIONS 
QueueName = ai ,az,~3,~4,05; 
Queuelink 
05 > Wiac; 
Wiac > a3; 
04 < Devicax; 
~ e v i ~  < az; 
PMDPSS < Q3; 
PMDPSS > (22; 

ai PMDPSS; 

Fig. 12. Test configuration file. 
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ExeartionNumkw: 1 Caae-Number: 1 

Status: Cwes identical In file Devices.tr and file 
Dcwice_ac.da 

Event Path taken and Case Statua in flk Devicax.tr: 
[ I D L E s e n d _ m e s s e g e , D I O ~ ~ : ~ ~ ; D C ~ V E ~ M O ~ : D C ~ V E ;  
D C M 0 V E D C C K S U M ; D C I O D C A M ) V E ; D C C ~ R ~ ~ W ~ ~  
Caea-SfatUs: 0 

Event Path taken and Case status in flk Devicex.da: 
[ I D L E : s e n d _ m e s s e g e , D l O ~ V E ; D C M O V E ; D ~ V E D C ~ ~ ~ M O V E ;  
DCMOM,DCCKSUM;DCIO;DCMOVE;DCCNTRDCCL~K;WA~ 
case_status: 0 

EXewtbnNumber: 1 CaseNumber: 2 

Status: Caseg identical in file DeviCe_ac.tr and file 
Deviceac.da 

Event Path taken and Case Status in file Deviis.tr :  
[ l D L E m p l y ~ , ~ c K ) : D C I O ; I D L E l  
casestatus: 0 

Event Path taken and Case Status in Lle Devicaxda: 
[ I D L E r e p i y ~ , D C l O ; D l O i D ~  
Caae-status: 0 

Fig. 13. Comparison results file. 

EX-1 
CaeaNumkw: 1 
RuntimeName: Devicex 
TraceDataAvailabk 
Actim- WUFiA 
PmtoodMesoaee_T~~Elapsed-Tlm: Thu Apr 13 1 4 3 3 : ~  1889 
P m t o c o ~ e D a t a P & e t : W O ~ X 0 1 2 W X 1 '  
Status: Triggered 
State: IDLE 
Event: sendmessage 
Variable_RetrievalElapsed-Tirne: Thu Apr 13 14:33:90 1889 
State-Table-Variables: 
ReplyPscket.data = ' ' 
ReplyP&et.status = 0 
FleqPa&t.data = ' ' 
R6qPaoketd = 0 
R e q w d s t  = 10 
DataPacket.boc = 0 
Detaplldcet.data = 
DataP&et.tns = 1 
Datamet.sts = 0 
DataPacket.and = 0 
0ataPacket.src = 0 
DataPad&.dst = 10 
Text = * ' 

@€&lag = True 
Result = 0 
data = ' 
tns = 1 
StS-0 
d = O  
src = 0 
dst = 10 
statUS=O 
h = O  
SYSSRR = 0 
Status: T-ed 
State: IDLE 
Event: sendmessage 
Action: DClO 
Variable_RetrievaLElapsabTime: Thu Apr 13 1433:30 1989 
State-Table-V~es: 
ReplyPacket.data = ' ' 
ReplyPacket.atatus = 0 

T i m e p w  = o 

Fig. 14. Trace data output file. 
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connected HP-UX message queues. HP DIS handles the 
message buffering. This decreases development time since 
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0 

Rg. 15. Configurations for HP DIS-built interfaces. (a) One 
protocol interface handles one port and one device. (b) Three 
protocol interfaces work together. (c) Three protocol inter- 
faces, each dedicated to a port, with an upper-level interface 
(Pl4) directing and organizing messages. 

process will be preempted. HP DIS uses this HP-UX exten- 
sion. With real-time HP DIS processes, response time vari- 
ability can be decreased. 

Performance Test Results 
HP DIS performance studies were conducted to answer 

these questions: 
What is the performance on HP 9000 Series 300 and 
Series 800 computers? 

m What is the throughput of an HP DIS interface? 
The flexibility of HP DIS allows device interface modules 

to be configured and combined in an infinite number of 
ways. A simple model was chosen that gives representative 
data involving the major items contributing to performance. 
Fig. 16 depicts a typical configuration. An application 
(PModel) is connected to a device interface module (PIl), 
which is connected to an HP-UX RS-232 multiplexer port. 
The port has a physical loopback connection and all data 
written to the port is immediately read back from the port. 
Each port has one PModel. A fixed-length message is sent 
to the port by a PModel and returned unchanged. Because 
the application program waits for each message to return 
before sending another, only one message is in the loop at 
a time per PModel. Throughput data is averaged over 20 
transmissions for various message lengths using one, then 

3000 

T 

Loopback Por;s\l. 

Fig. 18. HP DIS performance test model for multiple ports. 
PModel is a simulated HP DIS application. 
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Fig. 17. Loopback response time for performance tests using 
the HP DIS application PModel on (a) HP 9000 Model 375 
and (b) HP 9000 Model 832 computers (HP DIS 2.2 on HP-UX 
7.0). 
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two PModels. 
Fig. 17 shows the data throughput of an Hp 9000 Model 

375 and an HP 9000 Model 832, both with 16M bytes of 
memory, under the HP-UX 7.0 operating system. The 
throughput in Fig. 17 reflects the transfer of data one-way. 
The curves show the data throughput for one PModel and 
the sum of the data throughputs for two PModels. 

The throughput decreases with message sizes above 1000 
to 1500 bytes because HP DIS is performing message match- 
ing (see “Matching Messages,” page 67). HP DIS matches 
raw byte streams to the user’s definition of the message. 

Summary 
The Hewlett-Packard Device Interface System, HP DIS, 

is a tool that eases the development of communication 
links between computers and factory-floor devices. Inter- 
faces can be developed more quickly than with conven- 
tional code. Devices can be simulated, and testing is mostly 
automated. Communication links can be scaled, using only 
the routines needed for the application at hand. Through 
the use of this tool, factory-floor devices from many vendors 
can be mixed and matched. 

HP DIS can improve productivity, reiiability, develop- 
ment costs, and market response and reduce support costs 
for device interfaces. 
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Measurement of R, L, and C Paraml- --rs in 
VLSI Packages 
Developed to verify the electrical models of a 408-lead 
multilayer ceramic package, this measurement technique 
can measure the very small inductances, capacitances, 
and resistances that are typical of high-performance 
packages. It does not require extraction of RLCparameters 
from time-domain reflectometer measurements. 

by David W. Quint, Asad Aziz, Ravi Kaw, and Frank J. Perezalonso 

HE NEED FOR HIGH-PERFORMANCE, high-pin- 
count IC packaging with a large number of VO con- T nections has brought about a project to design and 

characterize a multilayer ceramic PGA (pin-grid array) ca- 
pable of providing up to 320 I/O lines at an operational 
frequency in excess of 60 MHz. Our challenge is to produce 
a package that brings the performance advantages of mul- 
tilayer cofired ceramic technology to high-lead-count, high- 
power VLSI circuits. The package currently in development 
will mount a 14-mm-square CMOS chip. 

Fig. 1 is a cross-sectional drawing of the package. The 
package contains 1 2  metallization layers, which are used 
for signal, power, and ground routing, and uses three-tier 
bonding from the chip to the bonding pads on the package. 
The top two bonding tiers on the package are exclusively 
for signal or VO connections. The bottom bonding tier is 
reserved for power supply and ground connections. The 
signal routing layers provide a stripline environment and 
there is a ground plane adjacent to each of the power supply 
planes. 

The pads on the chip are spaced at an effective pitch of 
approximately 110 micrometers (0.00433 inch). We have 
been able to match this pitch on the package by using two 
signal bonding tiers. Power supply connections are divided 
into eight groups for flexibility and noise isolation. The 

Bottom Bonding Tier 

Middle Bonding Tier 

Top Bonding Tier 

Dielectric Laver 1 (TL - 1 ) 1 

I n Slug 

chip mounts directly on a copper-tungsten heat spreader 
that is used for heat dissipation. The heat spreader is also 
connected to ground. 

Electrical Modeling 
The designers of system processing units put considera- 

ble effort into system simulations. One of their main con- 
cerns is the amount of noise induced on logic VDD (logic 
VDD powers the internal circuitry of the IC) and logic GND 
(ground). Another concern is noise on signal lines. Noise 
is caused by power and ground bounce* and by coupling 
of signals from one line to another. The main source of this 
noise is the familiar Ldi/dt term, which arises from logic 
and VO driver currents flowing in the inductance of the 
package and circuit board conductors. To produce mean- 
ingful simulations, it is necessary to include models of all 
these components in the circuits. The simulations are par- 
ticularly sensitive to the IC package model, since the pack- 
age lead inductance accounts for most of the inductance L 
in the Ldi/dt term for computing power supply bounce. 
The values of the power supply inductances that need to 
be added in the simulations range from about 70 picohen- 
ries to about 0.5 nanohenry. In addition, ground models 
"'Bounce" in ground and power supplies refers to a temporary droop or rise in the supply 
voltage caused by large currents drawn by devices using the supplies 

GND Plane 

GND Plane 
Signals 
GND Plane 
V,, Plane 
VDL Plane 

V,, Plane 
V,, Plane 

Dielectric Layer 2 (TL-2) :l:k:Bars -3-4 Dielectric Layer 3 (TL - 3) 
Dielectric Layer 4 (TL - 4) 
Dielectric Layer 5 (TL - 5) 
Dielectric Layer 6 (TL-6) 
Dielectric Layer 7 (TL - 7) 
Dielectric Layer 8 (TL - 8) 
Dielectric Layer 9 (TL-9) 
Dielectric Layer 10 (TL-IO) 

GND Plane 

Dielectric Layer 11 (TL - 11) 1 GND Plane --- 
Bypass Bypass 

Capacitor Capacitor 

Fig. 1. PGA (pin-grid array) con- 
struction detail (not to scale). All 
dielectric layers are 0.008 inch 
thick. 
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and signal trace models including cross coupling need to 
be included in the system simulations. 

Model Verification 
Creation of electrical models for the PGA was facilitated 

by various software tools and by leveraging previous work 
done on the subject. Verifying that these models were cor- 
rect was much more challenging and is the main topic of 
this paper. Models were verified by comparing package 
parameters calculated from the models with measurements 
on an actual PGA package. 

Most high-frequency measurements are done using a net- 
work analyzer or a time-domain reflectometer (TIIR). Both 
instruments measure reflections from discontinuities. The 
problem with using a TDR lies in the interpretation of the 
results when the time delay through a discontinuity is short 
compared with the rise time of the propagating pulse. The 
PGA package signal leads consist of stripline transmission 
lines with a signal propagation time between 100 and 200 
picoseconds and a characteristic impedance of approxi- 
mately 37 ohms. Considering the time delay through the 
package, a TDR pulse with a rise time of about 20 pico- 
seconds is necessary to give good resolution. Using such 
a fast rise time, skin effect, dielectric losses, and reflections 
from the test fixture and interconnections distort the reflec- 
tion test signals to such a degree that it is virtually impos- 
sible to extract an RLC circuit for the package itself. A TDR 
measurement also does not give numbers for first-order 
and second-order mutual inductances and capacitances be- 
tween signal lines. TDRs are especially unsuitable for the 
power supply planes because of the extremely low charac- 
teristic impedances of these planes (5Q or less). A TDR 
does not have the ability to drive such a low-impedance load. 

Since simulations are done with the Hp Spice software 
package using models made up of discrete R, L, and C 
elements, these are the parameters that need to be verified. 
Because TDR or direct measurements with an impedance 
analyzer cannot give this kind of detail, it was deemed 
necessary to develop another measurement technique, 
which is described in the following sections. 

Caprrchnce Measurement 
A typical PGA signal trace structure, including the signal 

wirebond and the PGA pin, is modeled in the passive cir- 
cuit of Fig. 2. This is a useful model for HP Spice simula- 
tions. It can also be approximated in the form of transmis- 

sion lines with 2, = and propagation time 
t = a. The transmission line approach is more dif- 
ficult to apply when the mutual coupling and resistive 
losses are important. This is the case in any IC package 
where a number of YO lines and internal circuits are 
switching simultaneously. The RLC equivalent is applica- 
ble to any circuit where the time delay of the element is 
less than about half the shortest rise time of the propagating 
signal. In the case of pin-grid array packages, the odd 
geometry gives the device non-TEM properties; for exam- 
ple, the capacitive and inductive coupling coefficients are 
not equal. 

To overcome the shortcomings of traditional measure- 
ment techniques, the following method is used. The R, L, 
and C values in Fig. 2 are measured using slightly different 
electrical circuits. The only source used is a ramp generator 
and the only detector used is an oscilloscope with a 
matched 50Q input impedance. Fig. 3 illustrates the mea- 
surement of a capacitance such as the coupling capacitance 
between the two traces. The use of a ramped input signal 
cancels effects of circuit elements that are not under test 
and aids in the interpretation of results. The charging cur- 
rent i(t) defines the voltage across the oscilloscope's chan- 
nel 2 inputs and the unknown capacitance Cx can be calcu- 
lated from 

where voltage is measured at the center time of the V, 
ramp. 

The voltage V,, is small, but its accurate measurement 
is important to the determination of the parameter values. 
The measurements that must be taken on the oscilloscope 
screen are the slope of the Vi, ramp (dVi,/dt) and V,, 
the plateau voltage on Vout. Matched coaxial cables be- 
tween the instruments and the device under test introduce 
time delays, but do not introduce any additional factors in 
the equation for C, above. For example, losses in the coaxial 
cables from the sample to the oscilloscope will introduce 
no error if they are the same length for both channels, since 
the measurement depends on the quotient of the measured 
voltages. The voltage drops across the series resistance and 
inductance in the trace are small, since they are in series 
with the capacitive impedance. The capacitive impedance 
dominates the current, so the resistive and inductive volt- 

Wirebond PGA Trace I -1 1.2 pF 

Plating Stub PGA Pin I I 
GND2 

PGA 3.2nH 50mn 
Pad 

2.9 nH 100mR NodeT2 

I 3.1 pF I 
Node Eo Z N D  3 

NodeT; ~~ r T 3  

0.30 pF 0.30 pF Node T4 

Fig. 2. Passive circuit model of a 
typical PGA signal trace structure, 
showing typical trace parameters. 
Nodes T3 and T4 are correspond- 
ing nodes on the adjacent signal 
trace for capacitive coupling. In- 
ductive coupling is not includ@d 
in this model. 



ages can be ignored. In addition, the capacitive loading on 
the Vout side is of little consequence, because the voltage 
being measured (the plateau top) is essentially constant. 
The capacitance on the V,,, side will drop out of the mea- 
surement equation if the time constant CoutRscope2 is much 
less than the test pulse rise time. 

C, can be measured quite easily at several pulse rise 
times, and the calculated values of C, can be compared for 
the different measurements. The longest pulses will give 
smaller plateau voltages, increasing the importance of the 
signal-to-noise ratio of the equipment, while the shorter 
pulses will cause the measurement to depart from its true 
value in a systematic way as the parasitics in the test jig 
become more dominant. In the PGA and other common 
packages, there is usually a wide range of pulse rise times 
that give the same answer for the value of the tested ele- 
ment. 

In this and all the other test situations, the test jig param- 
eters must be measured without the package and subtracted 
from the values obtained with the package in place. The 
design of the test jig is important and must include 
matched-impedance lines with connections as close as pos- 
sible to the PGA to minimize the parasitics of the test jig. 
Good ground integrity is important, since large parasitics 
can be introduced quite easily. Poor connections are easily 
found using the real-time display of the oscilloscope. Move- 
ment of a poor connection will produce corresponding 
wiggling of the oscilloscope trace and a poor connection 
can usually be located quickly and corrected. Once the test 
jig and cabling are connected properly, movement of the 
cables should produce no noticeable movement of the os- 
cilloscope traces. This troubleshooting ability is another 
benefit of this technique. 

Inductance Measurement 
Inductances are measured by applying ramped currents 

instead of ramped voltages to the traces under test. This is 
arranged by shorting the wirebonds of the PGA traces to 
the PGA ground circuit. This circuit is shown in Fig. 4. 

T L 
-- 

Time (ns) 

Fig. 3. Capacitance measurement circuit and voltage wave- 
forms. 

The input impedance of the signal trace, represented by 
L, in series with R,, is low compared with the effective 
source impedance of the generator and the oscilloscope in 
parallel ($enllRscope), so the input current is determined 
solely by the test equipment connected to the circuit. Thus, 
current I(t) = Vgen(t)Rgen, since the package under test is 
virtually a short circuit. Virtually all of the current from 
the ramp generator flows through the package trace, so the 
voltage Vout is determined solely by the trace inductance 
and resistance. Again, if the rise time of Vge, is much greater 
than the time constant of the generator and package induc- 
tance, the voltage across the package quickly becomes 
Vout = L,dI/dt + R,I. The output pulse consists of the sum 
of two components: (1) a flat-topped pulse like the one in 
the capacitance measurement, and (2) a ramp proportional 
to the input current. If we separate the two voltages in Fig. 
4, call the inductive voltage V,,, represented by the plateau 
voltage, and call the resistive voltage V,, the final voltages 
after the ramp can be found from: 

(3) 

where dVge,/dt is the slope of the ramp voltage and Vgenrnax 
is the final voltage of the V,, step (see Fig. 4). 

The bounce caused by the partial inductance of the PGA 
ground net can be canceled by driving a third (uncoupled) 
signal trace, grounded to the shield at the inner lead bond, 
with a negative-going ramp of the same magnitude. The 
third lead must be uncoupled so that mutual inductance 
does not contribute unwanted voltages to the measurement. 

Test Fixture and Parasltics 
For each of the parameters that we measured (inductance, 

capacitance, mutual inductance, and mutual capacitance) 
we had to build a different set of probes. The parasitics of 

1: 
Vssn 

T 

0 10 20 30 40 50 
Time (ns) 

Flg. 4. Inductance measurement circuit and voltage wave- 
forms. 
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d after each measure- 
ristics of the probes 

cially important in thecase of the power supply inductance 
measurements because the characteristics of the probes 
were comparable in magnitude to those of the package. 

Signal Models 
Signal trace models were calculated using Stripcal' to 

calculate the lumped elements in the trace model between 
the PGA bond pad and the base of the pin. Ind3' was used 
to calculate the inductances (both self and mutual) for the 
wirebonds. The measurements were done on a 408-pin 
PGA that had a test chip mounted and bonded in it. For 
the inductance measurements, all the wirebonds were 
shorted together on the chip. For the capacitance measure- 
ments, all the signal wirebonds were isolated. 

Resistance measurements are not discussed in detail be- 
cause they are straightforward and because the measured 
values of the tungsten metallization sheet resistance were 
between 5 and 7 milliohmshquare, well below the maxi- 
mum specification of 13 milliohms/square. In addition, the 
resistance of the ground and power supply routing was 
less than 5 milliohms, which was not considered signifi- 
cant. 

The inductance measurement results were as follows: 

Parameter Measured Calculated Difference 
Self L (upper tier) 15.lnH 15.2nH 1% 
Self L (middle tier) 14.9nH 14.6nH Z Y O  

MutualL(uppertier) 4.7nH 4.5nH 4% 
WB coupling (1st order) 2.0 nH 2.1 nH 5% 
WB coupling (2nd order) 1.4 nH 1.5 nH 7% 

Mutual L (middle tier) 3.64 nH 3.21 nH 12% 

Note: WJ3 = wirebond. 

The sources of error for the signal inductance parameters 
are: (1) the routing on the chip, (2) variations in the length 
and the shape of the wirebonds and traces, and (3) imper- 
fections in the ground planes. 

The capacitance measurement results were as follows: 

Parameter Measured Calculated Difference 
Self C (upper tier) 10.1pF 9.5pF 6% 

Mutual C (upper tier) 0.7pF 0.5pF 29% 
Self C (middle tier) 6.5pF 6.3pF 3% 

Mutual C (middle tier) 0.6 pF 0.5 pF 17% 

The sources of error in the signal capacitance measure- 
ments are: (1) the capacitance of the pin braze pads, and 
(2) the capacitance of the vias and the associated cover 
dots. The capacitance between the wirebonds and between 
the pins was found to be less than 0.1 pF and has been 
ignored. 

Power Supply Models 

signal traces. The results were as follows: 
The measurements were done in the same way as for the 
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Parameter Measured Calculated Difference 
Self L of VDD 97pH 79pH 19% 
Self L of VDL (group 1) 0.88 nH 0.77 nH 14% 
SelfLofVDL(group2) 1.18nH 1.06nH 11% 

Self C of VDL (group 1) 0.66 nF 0.62 nF 6% 
Self C of VDL (group 2) 0.5 nF 0.47 nF 6% 

Self C of VDD 4.96nF 4.92nF 1% 

Note: VDD is the logic power supply voltage and VDL is the 
YO driver supply voltage. 

VDD Measurement Errors 
In the VDD inductance measurements, the topology forced 

us to put all eight ground wirebonds on the same side of 
the VDD wirebonds instead of four on each side as the chips 
are actually bonded. Moving all the ground wirebonds to 
one side of the VDD wirebonds may increase the inductance 
of the wirebonds by up to 50%. This effect accounts for 
most of the difference between the calculated and measured 
values of the VDD inductance. Fig. 5 compares the measure- 
ment bonding pattern and the pattern the package was 
designed to use in actual operation. Another source of error 
is the shape (loop height, length, etc.) of the wirebonds. 
The wirebond shape may be turn out to be different from 
the one that was analyzed. 

Chip 

Package 

Chip 

Package 

Fig. 5. To measure VDD inductance, it was necessaty to put 
all eight GND wirebonds on the same side of the VDD 
wirebonds, as shown in (b). In actual service, the wirebond 
pattern is as shown in (a). This accounts for most of the 
difference between the measured and calculated values. 



VDL Measurement Errors 
The wirebonding pattern may vary in the VDL bonds. In 

the calculations for the VDL inductance, we also did not 
take into account the inductance of the epoxy routing on 
the chip. 

The power trace capacitance measurements were done 
without the bypass capacitors because the 0.1-pF nominal 
value of the bypass capacitor is very large compared to the 
capacitance parameter that we were trying to measure. A 
very high degree of correlation was obtained between mea- 
surements and calculations. 

Conclusions 
It is important to be able to verify electrical models of 

packages used in high-performance systems. Time-domain 
reflectometry cannot give the kind of detail needed for 
model verification, and it is very difficult to derive an RLC 
circuit from the results. 

The measurement technique described in this paper3 
overcomes the problems associated with TDR measure- 
ments. Inductance is measured while capacitance is 
shorted out, and capacitance is measured on open-circuit 
traces so inductive effects are negligible. Slow rise times 
of input voltage pulses make it possible to avoid transmis- 
sion line effects. A feature of this method is that the mea- 
surements can be made with readily available digital oscil- 
loscopes and pulse generators. 

Good correlation between the calculated and measured 
results for the PGA package was obtained. This measure- 
ment technique has also been used to measure parameters 
of TAB (tape automated bonding) packages, printed circuit 
PGAs, and printed circuit board connectors with good re- 
sults, and could also be useful in other electrical model 
verification experiments. 
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Statistical Circuit Simulation of a 
Wideband Amplifier: A Case Study in 
Design for Manufacturability 
Statistical variations of integrated circuit parameters are 
often correlated, not independent. Examples are side-by- 
side resistor values and matched transistor gains. 
Accounting for these correlations using principal 
component analysis can make statistical simulation an 
accurate predictor of manufacturing data. 

by Chee K. Chow 

N INTEGRATED ClRCUIT DESIGN, there is a need for 
statistical circuit simulation that can accurately project I circuit performance distributions in manufacturing. 

There are two reasons for this need. First, being able to 
project the performance distributions precisely in the de- 
sign phase enhances the chance of a first-pass success. 
Thus, the cycle time from the design phase to manufactur- 
ing release can be significantly reduced. Second, simula- 
tion can serve as a diagnostic tool to identify hidden process 
problems. For example, large discrepancies between the 
simulated and manufactured distributions frequently indi- 
cate process anomalies not previously discovered. 

A simple approach to statistical circuit simulation is to 
perform a large number of Monte Carlo simulations.' The 
inputs to these simulations are computer-generated ran- 
dom circuit parameters based on the means and standard 
deviations of the circuit elements extracted from the man- 
ufacturing data. A significant drawback of this approach 
is that it does not account for the highly correlated nature 
of the device parameters within an integrated circuit die 
and also among dice. Consequently, it rarely gives accurate 
predictions. 

In integrated circuits, device parameter variations are 
separable into two types. Variations across many dice, waf- 
ers, or fabrication lots are random in nature, while those 
within a die are highly correlated. Examples of the latter 
type are the side-by-side layouts of resistors and matched 
transistor pairs. At present, commercially available circuit 
simulators do not address these intercorrelations, so they 
do not provide the information needed. 

This article describes a circuit simulator study that ac- 
counts for both the intradie device correlations and the 
lot-to-lot random variations. The technique used is based 
on principal component analysis, a branch of multivariate 
statistics. Examples are presented showing the application 
of this technique to a custom wideband bipolar amplifier 
IC used in the HP 54503A digitizing oscilloscope. The tech- 
nique was used to set an accurate specification early in the 
design stage and to identify a process problem affecting 
the circuit performance. 

Principal Component Analysls 
Consider an integrated circuit having n parameters such 

as resistor values and transistor gains. These parameters 
vary statistically from lot to lot, from wafer to wafer, and 
from die to die because of the time and spatial variations 
of the fabrication process. The manufacturing distributions 
for this IC can be simulated if an ensemble of n-variable 
vectors can be generated having the same statistical vari- 
ation as the circuit parameters. The accuracy of these simu- 
lations depends to a large extent on how accurately the 
intercorrelations of the n variables are accounted for. 

The n-variable vectors can be generated by multivariate 
statistical starting from the correlation ma- 
trix of the n variables. Multivariate statistics analyzes the 
structure of complex statistical variables to identify latent 
factors (factor analysis) or the principal components (prin- 
cipal component analysis). A comprehensive treatment of 
this subject can be found in the literature.2i3 Multivariate 
statistics has been used extensively by behavioral scientists 
to analyze latent factors responsible for certain behavior 
traits. Its applications to manufacturing problems, based 
on our literature survey, have been very limited.4s5*6*7 

One method of solving for the ensemble of n-variable 
vectors is based on principal component analysis tech- 
niques. Briefly, principal component analysis describes the 
variances of the n random variables in terms of a set of 
mutually orthogonal or statistically independent (uncorre- 
lated) variables known as principal components. Each prin- 
cipal component accounts for a portion of the total variance 
larger than the succeeding components. Statistical ensem- 
bles of the n variables can be readily generated from random 
numbers after the transformation to the principal compo- 
nents because of the statistical independence of the princi- 
pal components. 

The ensemble of n-variable vectors is generated in a 
closed-form solution starting from the n-variable correla- 
tion matrix R, provided that the eigenvalues of R are all 
positive and the variables are normally distributed. For a 
set of n circuit variables, yl, y,, ..., y, having a correlation 
matrix R, it can be shown that the ith statistical variable 
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yi is given by the e x p r e s ~ i o n : ~ ~ ~  
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yi = ( ?AYyijxj) ui + pi 

where xl, x2, ..., x, are normally and independently distrib- 
uted random variables (the principal components). The 
values for the xi in equation 1 are chosen randomly and 
independently. This is possible because the xi are statisti- 
cally independent. 

The Ai in equation 1 are the eigenvalues of R. The pi and 
ui are the mean and standard deviation of the ith variable. 
yij is the jth component of the ith eigenvector of R. The 
statistical measures for these variables are obtained from 
volume manufacturing data. 

Circuit Simulation Algorlthm 
A circuit simulator" was written in C and HP-UX scripts. 

It runs on an HP 9000 Series 370 workstation. The algorithm 
of this program is shown in Fig. 1. It consists of three 
modules: . A statistical analysis package performs all the computa- 

tions according to equation I. . A parser retrieves these correlated vectors and generates 
the HP Spice text files. . HP Spice performs the simulations. 
The user is required to input three pieces of information: 

(1) the HP Spice text file, (2) the correlation matrix of the 
circuit variables, and (3) the means and standard deviations 
of the circuit variables. Data for (2) and (3) has been com- 
piled from volume production measurements for many HP 
fabrication processes. 

The confidence limits of the simulated distributions vary 
as the square root of the number of simulations.' Based on 
numerous case studies, about 100 simulations are adequate 
to project a 95% confidence limit, even for a fairly complex 
system. Although these Monte Carlo simulations are com- 
putationally intensive, with the emergence of widely avail- 
able high-performance workstation-class computers, they 
can be routinely performed. A typical Zoo-sample simula- 

Statistical 

iP Spice Text 
lie GeneratIan 

HP Spice - HP Splce 
Text Film ' 1 Simulator HPSplce I 

/ 

Statistic-, 
Package 
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Fig. 1. Statistical circuit simulation algorithm. 
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Fig. 2. Simulation was used to set the minimum gain specifi- 
cation for this programmable gain circuit portion of an inte- 
grated amplifier IC. 

tion takes 149 seconds on an HP 9000 Model 370 worksta- 
tion. 

Case Study 
The merits of this statistical circuit simulator are illus- 

trated by two applications during the manufacturing re- 
lease of a custom high-speed integrated circuit. 

The circuit is an integrated amplifier fabricated using 
the HP5 process, a 5-GHz fT oxide isolation process. The 
IC is used in the HP 54503A low-cost, high-performance 
digitizing oscilloscope. This custom IC is the heart of an 
amplifiedattenuator assembly that accurately reproduces 
signals from dc to 500 MHz and from 40 mV to 40V with 
ac or dc coupling and a constant output dynamic range of 
500 mV. The IC consists of nine functional blocks. On-chip 

-I 
1.30 1.35 1.40 1.45 1 .so 1.55 

Minimum Amplifier Gain 

Fig. 3. The distribution of the minimum gain from 220 corre- 
lated simulations has a mean of 1.44 and a standard deviation 
of 0.04. It predicts a minimum gain specification of 1.33 to 
1.57. 
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registers can program the gain from 1.5 to 12.5 in 3% incre- 
ments. 

Projection of Manufacturing Specifications 
In the manufacturing release of this IC, no reliable data 

was available to set the minimum gain specification (1.5 
nominal) of the programmable gain circuitry shown in Fig. 
2. This gain cell can be programmed to amplify small sig- 
nals with a nominal gain of 1.5 to 12.5. 

An inaccurate specification on the minimum gain would 
cause high parametric yield loss. The statistical simulation 
techniques described previously were carried out to project 
the gain distribution in a real-life manufacturing environ- 
ment. For these simulations, 36 circuit elements were iden- 
tified as random variables. The correlation coefficients of 
these variables were compiled from production data for 
the HP5 process. Specifically, the following intradie device 
correlations were accounted for: 
w Correlations between resistors 

Correlations between transistor model parameters 
w Correlations between resistors and transistor model pa- 

rameters. 
A 200-sample Monte Carlo simulation was carried out. 

The simulated minimum gain distribution is shown in Fig. 
3. It projects a *3a specification of 1.33 to 1.57. Measured 
production data for six months shows a distribution with 
a mean of 1.43 and a standard deviation of 0.034 (Fig. 4). 
The measured data projects a specification of 1.33 to 1.53. 
The simulated and manufacturing statistics are compared 
in Table I. 
Statistical Simulation as a Diagnostic Tool 

A second example of the power of this simulation 
technique illustrates its role as a diagnostic tool. The por- 
tion of the IC under study is the dc restore circuit, which 
level shifts the complementary high-frequency outputs to 
the ground level. A block diagram is shown in Fig. 5. From 
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Fig. 4. Six-month production data has a distribution with a 
mean of 1.43 and a standard deviation of 0.034. The minimum 
gain specification is 1.33 to 1.53. 

-- 

High-Frequency 

Level-Shifted 

Fig. 5. A portion of the integrated amphfier IC showing the 
operational amplifier and resistor bridge of the level shifting 
subcircuit. The op amp in this dc restore circuit had a large 
low-frequency output offset for which the simulation data 
did not match the production data, suggesting a process 
anomaly. 

Table I 
Comparison of Simulated and 

Measured Minimum Gain Distributions 

Simulated Measured 
Mean 1.44 1.43 
Standard Deviation 0.04 0.034 
Specification 1.33-1.57 1.33-1.53 
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Fig. 0. Distribution of the output offset of the op amp from 
production data. The mean is -49 mV and the standard de- 
viation is l l mV. 



production data, the low-frequency output offset voltage 
of the op amp had been observed to be large. The op amp 
output offset voltage is defined as the output voltage of the 
op amp when the two high-frequency outputs (inverting 
and noninverting) are equal. Under balanced conditions, 
the output offset should be close to zero. It was not known 
what the standard deviation caused by process latitudes 
should be. Fig. 6 shows a typical distribution of this param- 
eter from six months of production data. It has a mean of 
-49  mV and a standard deviation of 11 mV. 

The op amp circuitry has 22 random variables, of which 
12 are highly matched resistors and 10 are the transistor 
model parameters. Correlated simulations were carried out 
as for the first example. A 200-sample simulation revealed 
the distribution of the offset voltage to have a mean of 11 
mV and a standard deviation of 3.4 mV. Such a large dis- 
crepancy between the manufactured and simulated distri- 
butions suggests some hidden process anomaly that has 
not been discovered. 

Subsequently, the process defect that caused this wide 
distribution of the output was identified. The circuit was 
redesigned to desensitize it to the process defect. The dis- 
tribution from one wafer after redesign is compared to the 
simulated distribution in Fig. 7. The redesigned circuit 
shows a mean of 6 mV and a standard deviation of 4.8 mV. 
The simulated values are close to the initial production 
data. The slight discrepancies of the standard deviations 
can be accounted for by a variety of second-order effects 
that were not included in these simulations, most notably 
variations in metal resistivity and metal-to-metal contact 
resistance. 

15 *O 5 I 

-10 0 10 20 30 
(a) Output Offset (mV) 

LLlL- 50 0 -10 0 10 20 30 

(b) Output Offset (mV) 

Fig. 7. (a) The distribution of the output offset voltage of the 
op amp from 200 correlated simulations has a mean of 11 
mV and a standard deviation of 3.4 mV, very different from 
the production data shown in Fig. 6. (b) The distribution from 
one production wafer after redesign has a mean of 6 mV and 
a standard deviation of 4.8 mV, more closely matching the 
simulation data. 

Conclusions 
This statistical circuit simulation study has demonstrated 

the accuracy of this technique in projecting circuit perfor- 
mance distributions in manufacturing. The technique also 
has a valuable role as a diagnostic tool for troubleshooting 
process problems. Despite some assumptions used both in 
the underlying principal component analysis theory and 
the device modeling, these simulations are accurate enough 
to be a practical CAD tool in product development. 

It is hoped that this approach to design for manufactura- 
bility, through synergism of volume production data with 
design simulation tooling as exemplified by this simulation 
study, will be a significant contribution to manufacturing 
technology. 
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System Level Air Flow Analysis for a 
Computer System Processing Unit 
Numerical simulation of particle traces using finite element 
modeling and supercomputers gives a good qualitative 
picture of air flow features. Computed velocity profiles and 
pressure drops have reasonably good accuracy. 

by Vivek Mansingh and Kent P. Misegades 

TEADY, VISCOUS, THREE-DIMENSIONAL AIR 
FLOW within a computer system processing unit S has been analyzed using finite element modeling. 

The objective of the study was to investigate the effective- 
ness of finite element modeling in predicting the air flow 
characteristics within a computer. A full-scale three-dimen- 
sional finite element model of an HP 9000 Model 850 com- 
puter was created using F%DAP, the finite element code 
from Fluid Dynamics International. This model consisted 
of over 60,000 nodes and over 40,000 8-node brick ele- 
ments. Extensive computations were carried out using 
CRAY Y-MP supercomputers. General flow characteristics, 
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including velocity profiles and pressure drop across the 
system, were computed. Numerically calculated particle 
traces were recorded using video equipment. It was found 
that numerical simulation of particle traces can show good 
qualitative features of the flow through the system and the 
modeling results of velocity pmfiles through the boards 
and the system pressure drop have reasonably good accu- 
racy. 

Prom Objective 
For the thermal management of air-cooled computers, 

the key air flow parameters to be determined are the air 

110 
side 

CPU Fan Location 0 Side 

1 T 
side view 

Fig. 1. HP 9OOO Model 850 computer system processing unit 
(right side of computer in photo). There are six fans. 
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velocities in the computer cabinet and the pressure drop 
across the system. The air velocity flow characteristics in 
the system help in designing the system layout at the board 
and component level while the system pressure drop forms 
the basis for selecting air movers. Thermal management at 
the component level also requires the knowledge of board 
and component level air flow characteristics. 

Traditionally, pressure drop and flow characteristics 
within a computer cabinet have been experimentally mea- 
sured on prototypes of the machines. Unfortunately, an 
accurate prototype can only be available when all the com- 
ponents of a system have been designed. This typically 
happens only towards the end of a design effort. Therefore, 
the flow characteristics and the system pressure drop can 
be accurately measured only after almost all the compo- 
nents of the system have already been designed. If for some 
reason the pressure drop is found to be excessive or the 
air flow characteristics are found to be different than ex- 
pected, major design changes may have to be made at the 
end of the design cycle, resulting in serious product mod- 
ifications and delays. Furthermore, experimental measure- 
ments in a prototype are both difficult and expensive in 
terms of human effort. 

It would be advantageous to have modeling tools that 
can predict these air flow characteristics early in the design 
process. A model could also easily simulate effects of high 
altitude, zero gravity, and other conditions. The objective 
of this study was to investigate the effectiveness of finite 
element modeling in predicting the air flow and pressure 
drop characteristics within a computer. 

Model Development 
As mentioned earlier, a full-scale model of an air-cooled 

HP 9000 Model 850 computer system processing unit (SPU] 
was created. A photograph and a drawing of a Model 850 
SPU are shown in Fig. 1. AModel850 SPU is approximately 
1 m high, 0.7 m wide, and 0.7 m deep. It has four processor 
boards and several other memory and YO boards. The back- 
plane essentially divides the cabinet into two halves: the 
CPU (central processing unit] side and the I/O side. It has 
six tube axial fans for cooling, which operate in the suction 
mode. Four of these fans are for the CPU side and two are 
for the I/O side. The air inlet is at the top and the outlet is 
at the bottom. Detailed mechanical drawings showing loca- 
tions and dimensions of the structural components, printed 
circuit boards, suction fans, flow inlets, and flow outlets 
were used to create the full-scale model of the system using 
FIDAP’s preprocessor FIPREP and mesh generator FIMESH. 
The full model was divided into smaller finite elements 
using 8-node brick elements. Fig. 2 gives a view of the final 
mesh, consisting of 60,507 nodes and 48,600 elements. 

From the outset, it was recognized that detailed three- 
dimensional modeling from the system level to the compo- 
nent level, that is, from the overall dimensions of the 
cabinet down to the smallest component on a board, was 
impossible, both from a modeling standpoint and because 
of computation time requirements. For instance, we esti- 
mated that simulating the flow through just one of the CPU 
boards having a number of RAM chips, PGAs, CPU chips 
and multifinned heat sinks would require a mesh of ap- 
proximately 60,000 to 100,000 elements and a run time of 
more than 10 CPU hours. Therefore, it was not possible to 
model every single component in the system. Since the 
main focus for this project was on system level characteris- 
tics, a component level simplification in the geometry was 
made. To model the components on the boards, it was 

Fig. 2. A view of the finite element 
mesh for simulation of the air flow 
in an HP 9OOO Model 850 SPU. 
The complete mesh consists of 
60,507 nodes and 48,600 8-node 
brick elements. 
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~ U T E R  AIFFLMS AT ASSEMBLY LEVEL - CRAY SIWULATION 

4 
Fig. 3. Computed flow velocities 
in the X-Z ptane at the entrance to 
the printed circuit boards. 

assumed that between any two printed circuit boards, a 
certain percentage of the flow passage was blocked by com- 
ponents. Based on good engineering judgment, for the four 
CPU printed circuit boards the blockage was assumed to 
represent 30% of the volume between two adjacent boards, 
whereas for all the other boards the blockage was assumed 
to represent 50% of the volume between adjacent boards. 
Flow deflection vanes at the air inlet of the cabinet were 

included in the model as infinitely thin plates at the same 
angle as the actual vanes. 

Although the computational effort required to generate 
this three-dimensional model was moderate, it took ap- 
proximately 1% engineer-months to create the model be- 
ginning from mechanical drawings. It is also important to 
note that the use of computer graphics was essential to the 
successful creation of this mesh, visual analysis of the mesh 
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Fig. 4. computed flow velm~ies 
in the Y-Z plane through the 
printed circuit boards. 
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Fig. 5. Computed flow velocities 
through the system. 

generator's results being the only good means of checking 
progress. For this, both FIDAP's postprocessor FDPOST 
and Cray's Multi-Purpose Graphics System MPGS were 
used. All computations, including graphics, were per- 
formed on CRAY Y-MP supercomputer systems. 

Boundary Conditions 
The physical problem modeled was three-dimensional, 

steady, viscous, laminar, isothermal flow. Because the ve- 
locity through the system was of the order of 2 m/s and 
the length scales of the components were small, the flow 
was assumed to be laminar. The flow was assumed to be 
isothermal because the main focus of the problem was the 

Fig. 6. Animation of simulated 
particle traces representing the air 
flow. 
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fluid flow characteristics. 
On all solid surfaces of both physical and blocked re- 

gions, a no-slip velocity boundary condition was specified. 
At the two air flow entrances on the top front and back of 
the cabinet, no boundary conditions were set. For the air 
outlet at the bottom of the cabinet, a constant-velocity bound- 
ary condition was defined. However, for the outlet bound- 
ary condition, not enough information was available ini- 
tially. The flow rate produced by a fan is dependent on 
the pressure drop it experiences. Flow rates are given in 
tabular or graphical form as a function of pressure drop. 
The data used in this work was for the fans running at 60 
Hz at sea level. Since we did not know the pressure drop 
of the system at the outset, it was not possible to know the 
fan flow rate that would define the air exit boundary con- 
dition. To get around this problem, the following iterative 
procedure was used: 
1. An initial fan flow rate was guessed. 
2. For this given fan flow rate, the flow field including the 
pressure drop was calculated based on the uniform exit 
velocity across the exit area that would result in the same 
volumetric flow rate as produced by six fans. 
3. For this computed pressure drop, the corresponding 
flow rate from the fan manufacturer's performance curve 
was found. 
4. An average of this new flow rate and the previously 
guessed flow rate was used to calculate the exit velocities, 
which were used as new boundary conditions for the next 
computation. 
5. This procedure was repeated until the guessed flow rate 
produced the corresponding pressure drop according to 
the fan curves. 

Computations 
The three-dimensional Navier-Stokes equations of mo- 

tion' were solved in the nondimensional form. The solution 
technique used was the segregated method.' A sep 
linear system was solved for each of the four degre 
freedom-three velocity components and pressure. Relaxa- 
tion factors' used for the four degrees of freedom were 0.8, 
0.8,  0.8 for the three velocity components and 0.0 for pres- 
sure. To improve the accuracy and stability of the solution, 
an upwinding factor' of 1.0 was used for all degrees of 
freedom for all computations because high velocity gra- 
dients were expected in the coarse mesh regions. 

Starting from an initial linear Stokes flow solution, the 
problem was run for five iterations using the segregated 
solver, resulting in the following solution or convergence 
errors for the four degrees of freedom: 

XVelocity: 0.0084 
H YVelocity: 0.0074 

ZVelocity: 0.0038 
Pressure: 0.021. 

The FIDAP User's Manual reco 
be driven to 0.001 when using the segregated solver. How- 
ever, we were not able to converge to values lower than 
these even though several other values of relaxation and 
upwinding parameters were tried. 

After the initial five-iteration solution, a new fan flow 
rate was guessed and a second run was made. The solution 
was said to have converged when the pressure error was 
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less than or equal to that of the first run, 0.021. The results 
of this iterative procedure are given below: 

Typfcal flDAP Run 

Run Nurnberof Fancfm Pressure PressureDrop Fandm 
lteratlons Guessed Error Computed Actual 

1 5 100 0.021 0.46inH20 70 
2 7 85 0.016 0.40inH,O 90 

In this typical example, 12 iterations were required to 
find a value of fan flow rate within 10% of that actually 
supplied by the fan. Given that other simplifications in the 
model had been made, it was felt that this level of con- 
vergence and accuracy was adequate. 

On the CRAY Y-MP supercomputer, 10 hours of CPU 
time were required to perform the 12 solution iterations 
needed. Memory needed was 4.OM words of main memory 
and 87M words of secondary memory or scratch memory. 
For scratch memory, a CRAY SSD (solid-state storage de- 
vice) was used. This reduced an otherwise substantial VO 
wait time penalty for disc memory devices to a small frac- 
tion of the total run time. 

Numerical Results 
As mentioned earlier, general flow characteristics in- 

cluding the velocity profile and the pressure drop across 
the system were computed. Some typical pictures of the 
flow velocities through the system are shown in Figs. 3 , 4 ,  
and 5. These illustrate well the qualitative features of the 
flow entering the CPU side and the 110 side at the top 
section, turning and going through the printed circuit 
boards, and exiting the fan outlet region. An interesting 
aspect of the results is that a substantial portion of the flow 
entering the YO side or the rear of the cabinet actually 
passes over the backplane obstruction in the top section 
and flows to the CPU side at the front of the cabinet. It can 
also be seen that'the velocities are low at the entrance, 
increase between board slots and then decrease again at 
the exit of the board slots. The air velocities are higher in 
the four CPU board slots than in the memory and YO board 
slots and are in the range of about 1 to 2.75 m/s. 

As mentioned earlier, simulated particle paths or traces 
were recorded on video. The traces represent the path that 
a massless particle would take through the computer cab- 
inet if released at various locations along the inlet planes. 
Such traces are very useful in giving a qualitative represen- 
tation of the three-dimensional complex flow field. Using 
MPGS, the Multi-Purpose Graphics System from Cray Re- 
search, these traces were animated to show the details of 
the flow. The animation very clearly shows the cross flow 
of air from the VO side of the cabinet to the CPU side and 
other complex features of the flow. A typical picture of 
particle simulation is shown in Fig. 6.  

Experimental Results 
Experimental measurements of the air velocities were 

carried out on an actual system with the help of a hot-wire 
anemometer. The cabinet walls and some of the boards 
were modified so that the hot wire could be inserted into 
the cabinet at the desired locations. Velocity profiles were 
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Fig. 7. Computed and experimental air velocities in CPU 
board slot 0 at the middle of the board. 

measured in the CPU and I/O board region across the 
boards. A typical velocity profile measured in CPU board 
slot 0 at the middle of the board is shown in Fig. 7. The 
slot depth (X in Fig. 3), is plotted on the x axis while the 
respective velocities are shown on the y axis. It can be seen 
that the air velocities are in the range of 1.25 d s  to 2.25 
m/s. The velocities are about 1.5 m/s at both ends of the 
board, with the highest velocities of about 2.25 d s  in the 
middle of the board. One of the reasons for the nonunifor- 
mity in the velocity profile is the presence of various com- 
ponents (chips, heat sinks, etc.) on the board. 

A comparison of the numerical results with the experi- 
mental results is also shown in Fig. 7. The numerical results 
predict higher velocities in the center and lower velocities 
near the ends than were actually measured. However, the 
range of velocities is about 1.5 m/s to 2.75 d s ,  which is 
relatively close to that measured experimentally. It should 
be noted that in the numerical simulations, the board com- 
ponents were modeled as blockage to the flow, whereas in 
the experiments, the boards had actual components on 
them. 

Conclusions 
Steady, viscous, three-dimensional air flow within a 

computer SPU has been analyzed using finite element model- 
ing. General flow characteristics including velocity profiles 
and pressure drop across the system were computed. Nu- 
merically simulated particle traces were recorded using 
video equipment. It was found that numerical simulation 
of particle traces can show good qualitative features of the 
flow through the system. The particle traces show some 
extremely interesting flow characteristics that could not 
have been known easily otherwise. The computed velocity 
profiles through the boards and the computed system pres- 
sure drop have reasonably good accuracy. Modeling pre- 
dicted the air velocities through the CPU board slots to be 
about 1.5 d s  to 2.75 mh whereas the experimental mea- 
surements showed about 1.25 d s  to 2.25 d s .  However, 
finite element modeling can be relatively expensive in 
terms of computation time. 
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